• 제목/요약/키워드: Genome sequences

검색결과 851건 처리시간 0.028초

Terminal Nucleotide Sequences in the Double-stranded RNA Genome Segments of Infectious Pancreatic Necrosis Virus DRT Strain

  • Chung, Hye-Kyung;Park, Hong-Chul;Ichiro Uyeda;Masamichi Isogai;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권5호
    • /
    • pp.361-363
    • /
    • 1996
  • The terminal regions of the double-stranded RNA (dsRNA) genome segments of infectious pancreatic necrosis virus (IPNV) DRT strain were sequenced. The dsRNAs, which were $^{32}P$-labelled at their 3'-termini by incubation with [$^{32}P$]pCp and T4 RNA ligase, were separated by 5$%$ polyacrylamide gel electrophoresis, and the segments A and B of IPNV-DRT were sequenced by two-dimensional gel electrophoresis. The 5'-terminal sequences of the IPNV-DRT plus strand from two genome segments were found to have the same conserved nucleotide (5'-CGG(C/A)A-), but the 3'-terminal sequences -CCCCAGGCG-3' and -CGGACCCCG-3' were found in the plus strand from segments A and B, respectively. The inverted oligonucleotide sequences of 3'-terminal of between segments A and B were found and they differ from those of other IPNVs.

  • PDF

New Approach to the Analysis of Palindromic Structure in Genome Sequences

  • Kim, Seok-Won;Lee, Yong-Seok;Choi, Sang-Haeng;Chae, Sung-Hwa;Kim, Dae-Won;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.167-169
    • /
    • 2006
  • PABAP (Palindrome Analysis by BLAST Program) is an analysis system that identifies palindromic sequences from a large genome sequence up to several megabases long. It uses NCBI BLAST as a searching engine, and data processing such as alignment filtration and detection of inverted repeats which satisfy user-defined parameters is performed by manipulating data after populating into a MySQL database. PABAP outperforms publicly available palindrome search program in that it can detect large palindrome with internal spacer at a faster speed from bacterial genomes. It is a standalone application and is freely available for noncommercial users.

KUGI: A Database and Search System for Korean Unigene and Pathway Information

  • Yang, Jin-Ok;Hahn, Yoon-Soo;Kim, Nam-Soon;Yu, Ung-Sik;Woo, Hyun-Goo;Chu, In-Sun;Kim, Yong-Sung;Yoo, Hyang-Sook;Kim, Sang-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.407-411
    • /
    • 2005
  • KUGI (Korean UniGene Information) database contains the annotation information of the cDNA sequences obtained from the disease samples prevalent in Korean. A total of about 157,000 5'-EST high throughput sequences collected from cDNA libraries of stomach, liver, and some cancer tissues or established cell lines from Korean patients were clustered to about 35,000 contigs. From each cluster a representative clone having the longest high quality sequence or the start codon was selected. We stored the sequences of the representative clones and the clustered contigs in the KUGI database together with their information analyzed by running Blast against RefSeq, human mRNA, and UniGene databases from NCBI. We provide a web-based search engine fur the KUGI database using two types of user interfaces: attribute-based search and similarity search of the sequences. For attribute-based search, we use DBMS technology while we use BLAST that supports various similarity search options. The search system allows not only multiple queries, but also various query types. The results are as follows: 1) information of clones and libraries, 2) accession keys, location on genome, gene ontology, and pathways to public databases, 3) links to external programs, and 4) sequence information of contig and 5'-end of clones. We believe that the KUGI database and search system may provide very useful information that can be used in the study for elucidating the causes of the disease that are prevalent in Korean.

  • PDF

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Bioinformatics in the Post-genome Era

  • Yu, Ung-Sik;Lee, Sung-Hoon;Kim, Young-Joo;Kim, Sang-Soo
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.75-82
    • /
    • 2004
  • Recent years saw a dramatic increase in genomic and proteomic data in public archives. Now with the complete genome sequences of human and other species in hand, detailed analyses of the genome sequences will undoubtedly improve our understanding of biological systems and at the same time require sophisticated bioinformatic tools. Here we review what computational challenges are ahead and what are the new exciting developments in this exciting field.

Five Computer Simulation Studies of Whole-Genome Fragment Assembly: The Case of Assembling Zymomonas mobilis ZM4 Sequences

  • Jung, Cholhee;Choi, Jin-Young;Park, Hyun Seck;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • 제2권4호
    • /
    • pp.184-190
    • /
    • 2004
  • An approach for genome analysis based on assembly of fragments of DNA from the whole genome can be applied to obtain the complete nucleotide sequence of the genome of Zymomonas mobilis. However, the problem of fragment assembly raise thorny computational issues. Computer simulation studies of sequence assembly usually show some abnormal assemblage of artificial sequences containing repetitive or duplicated regions, and suggest methods to correct those abnormalities. In this paper, we describe five simulation studies which had been performed previous to the actual genome assembly process of Zymomonas mobilis ZM4.

Determination of Complete Genome Sequence of Korean Isolate of Potato virus X

  • Choi, Sun-Hee;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.361-364
    • /
    • 2008
  • The complete nucleotide sequences of a Korean isolate of Potato virus X(PVX-Kr) has been determined. Full-length cDNA of PVX-Kr has been directly amplified by long template reverse transcription and polymerase chain reaction(RT-PCR) using virus specific 5'-end primer and 3'-end primer, and then constructed in a plasmid vector. Consecutive subclones of a full-length cDNA clone were constructed to identify whole genome sequence of the virus. Total nucleotide sequences of genome of PVX-Kr were 6,435 excluding one adenine at poly A tail, and genome organization was identical with that of typical PVX species. Comparison of whole genome sequence of PVX-Kr with those of European and South American isolates showed 95.4-96.8% and 77.4-77.9%, in nucleotide similarity, respectively. Sequenced PVX-Kr in this study and twelve isolates already reported could be divided into two subgroups in phylogeny based on their complete nucleotide sequences. Phylogenetic tree analysis demonstrated that PVX-Kr was clustered with European and Asian isolates(Taiwan, os, bs, Kr, S, X3, UK3, ROTH1, Tula) in the same subgroup and South American isolates(CP, CP2, CP4, HB) were clustered in the other subgroup.

Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

  • Kim, Hyoung Tae;Chung, Myong Gi;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.372-382
    • /
    • 2014
  • In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

  • Liu, Ze-Xuan;Zhang, Yan;Liu, Yu-Ting;Chang, Qiao-Cheng;Su, Xin;Fu, Xue;Yue, Dong-Mei;Gao, Yuan;Wang, Chun-Ren
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.173-179
    • /
    • 2016
  • Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.