• 제목/요약/키워드: Genome Analysis

Search Result 2,364, Processing Time 0.027 seconds

Isolation of Coat Protein Gene from Cucumber Mosaic Virus and Its Introduction into Tobacco (오이 모자이크 바이러스 외피 단백질 유전자 분리 및 담배로의 형질전환)

  • 손성한;김경환;김영태;박종석;김주곤;이광웅;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 1995
  • The coat protein (CP) gene was cloned from RNA genome of the Cucumber Mosaic Virus strain ABI (CMV-ABI) isolated in Korea. The comparisons of the nucleotide sequence of the cloned CP gene and its deduced amino acid sequences with other CP genes revealed that the CMV-ABI belongs to subgroup I (type I), CMV-ABI developed the typical mosaic symptom in infected plants. Tobacco plants (Samsun and NC82) were transformed by leaf-disc transformation via Agrobacterium, temefaciens LB4404 harboring pVCP, witch CMV-ABI CP gene was inserted into the pBI121, and a number of mature transgenic tobacco plants were developed. Southern and PCR analysis of genomic DNA from the transgenic plants showed that the CP gene was integrated into the genomes of the most of the transgenic plant. Result of the segregation patterns of resistance in T1 seedlings of the plants to kanamycin showed that the transgenic plants containing l,2 and 3 copies of CP gene were50%, 39% and 11% of the total transgenic plants, respectively.

  • PDF

Agrobacterium-mediated Transformation of Eleutherococcus sessiliflorus using Embryogenic Calli and the Regeneration of Plants (오갈피(Eleutherococcus sessiliflorus)의 배형성 세포를 이용한 고빈도 형질전환 및 재분화)

  • Jeong, Jae-Hun;Han, Seong-Soo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.233-239
    • /
    • 2003
  • We have developed a reliable and high-frequency genetic transformation and regeneration system via somatic embryogensis of Eleutherococcus sessiliflorus. Embryogenic callus obtained from seed were co- cultivated with Agrobacterium tumefaciens strain EHA101/pIG121Hm harboring genes for intron-$\beta$-glucoronidase(GUS), kanamycin and hygromycin resistance. Following co-cultivation, two types of samples(fine embrogenic calli and early globular embryo clusters) were cultivated on Murashige and Skoog(MS) medium containing 1 mg/L2.4-D for 3day in dark. Transient expression of GUS gene was found to be higher in the early globular embryo clusters than in the embryogenic calli. Also, co-cultivated period affected expression of GUS gene; the best result was obtained when globular embryo clusters were co-cultivated with Agrobacterium for 3 days. Subsequently, this callus transferred to selective MS medium containing 1mg/L2.4-D, 50mg/L kanamycin or/and 30mg/L hygromycin and 300mg/L cefortaxime. These embryogenic calls were subcultured to the same selection medium at every 2 weeks intervals. Approximately 24.5% of the early globular embryos co-cultivated with Agrobacterium for 3days produced kanamycin or/and hygromycin-resistant calli. Transgenic somatic embryos were converted into plantlets in half strength MS medium supplemented with 3mg/L GA$_3$ kanamycin and were confirmed by GUS histochemical assay and polymerase chain reaction analysis. Genomic Southem blot hybridization confirmed the incorporation of NPT II gene into the host genome.

Establishment of Genetic Transformation System and Introduction of MADS Box Gene in Hot Pepper (Capsicum annuum L.)

  • Lim, Hak-Tae;Zhao, Mei-Ai;Lian, Yu-Ji;Lee, Ji-Young;Eung-Jun park;Chun, Ik-Jo;Yu, Jae-Woong;Kim, Byung-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • In vitro plant regeneration of inbred breeding line of hot pepper (Capsicum annuum L.) was established using leaf and petiole segments as explants. About 28 days old plants were excised and cultured on MS medium supplemented with TDZ and NAA or in combination with Zeatin. In all of the media compositions tested, combination of TDZ 0.5 mg/L, Zeatin 0.5 mg/L, and NAA 0.1 mg/L was found to be the best medium for shoot bud initiation. Young petiole was the most appropriate explant type for the plant regeneration as well as genetic transformation in hot pepper. In this study, HpMADS1 gene isolated from hot pepper was introduced using Agrobacterium-mediated transformation system. Based on the analysis of Southern blot and RT-PCR, HpMADS1 gene was integrated in the hot pepper genome. It has been known that floral organ development is controlled by a group of regulatory factors containing the MADS domain. Morphological characteristics in these transgenic plants, especially flowering habit, however, were not significantly altered, indicating this MADS gene, HpMADS1 may be non-functional in this case.

  • PDF

Genomic Alteration of Bisphenol A Treatment in the Testis of Mice

  • Kim, Seung-Jun;Park, Hye-Won;Youn, Jong-Pil;Ha, Jung-Mi;An, Yu-Ri;Lee, Chang-Hyeon;Oh, Moon-Ju;Oh, Jung-Hwa;Yoon, Seok-Joo;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • Bisphenol A (BPA) is commonly used in the production of pharmaceutical, industrial, and housing epoxy, as well as polycarbonate plastics. Owing to its extensive use, BPA can contaminate the environment either directly or through derivatives of these products. BPA has been classified as an endocrine disruptor chemicals (EDCs), and the primary toxicity of these EDCs in males involves the induction of reproductive system abnormality. First, in order to evaluate the direct effects on the Y chromosome associated with reproduction, we evaluated Y chromosome abnormalities using a Y chromosome microdeletion detection kit. However, we detected no Yq abnormality as the result of BPA exposure. Secondly, we performed high-density oligonucleotide array-based comparative genome hybridization (CGH) to assess genomic alteration as a component of our toxicity assessment. The results of our data analysis revealed some changes in copy number. Seven observed features were gains or losses in chromosomal DNA (P-value<1.0e-5, average log2 ratio>0.2). Interestingly, 21 probes of chr7:7312289-10272836 (qA1-qA2 in cytoband) were a commonly observed amplification (P-value 3.69e-10). Another region, chr14:4551029-10397399, was also commonly amplified (P-value 2.93e-12, average of log2 ratios in segment>0.3786). These regions include many genes associated with pheromone response, transcription, and signal transduction using ArrayToKegg software. These results help us to understand the molecular mechanisms underlying the reproductive effects induced by BPA.

Association Analysis of SERPINB5 Polymorphisms with HBV Clearance and HCC Occurrence in a Korean Population

  • Kim, Ja-Son Y.;Park, Tae-Joon;Lee, Jin-Sol;Chun, Ji-Yong;Bae, Joon-Seol;Park, Byung-Lae;Cheong, Hyun-Sub;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Serpin peptidase inhibitor, Clade B (ovalbumin), Member 5 (SERPINB5), also known as maspin, is a potent tumor suppressor gene. It has correlations with many tumor cells, from pancreas cancer to breast cancer, so it is possible that it may also affect liver cancer. There has also been a report that SERPINB12, a gene placed right next to SERPINB5, is expressed in liver. For this study, 32 polymorphisms were identified in SERPINB5 by direct DNA sequencing, and 11 of them were selected to be tested with a larger scale subjects. The association of the 11 SERPINB5 polymorphisms with Hepatitis B virus (HBV) clearance, hepatocellular carcinoma (HCC) occurrence and the onset age of HCC were analyzed. There were no significant associations found between 11 SERPINB5 polymorphisms and HBV clearance. In the case of HCC occurrence, one of the haplotypes (ht) showed association with HCC occurrence (OR=2.26, p=0.005, $P^{Cor}=0.05$), albeit with a low statistical power (40.8%) and haplotype frequency (0.052). Further study with a bigger sample size will be needed to clearly verify the association between ht5 and HCC occurrence.

Gene Expression Analysis for Statin-induced Cytotoxicity from Rat Primary Hepatocytes

  • Ko, Moon-Jeong;Ahn, Joon-Ik;Shin, Hee-Jung;Kim, Hye-Soo;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Statins are competitive inhibitors of hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase and used most frequently to reduce plasma cholesterol levels and to decrease cardiovascular events. However, statins also have been reported to have undesirable side effects such as myotoxicity and hepatotoxicity associated with their intrinsic efficacy mechanisms. Clinical studies recurrently reported that statin therapy elevated the level of liver enzymes such as ALT and AST in patients suggesting possible liver toxicity due to statins. This observation has been drawn great attention since statins are the most prescribed drugs and statin-therapy was extended to a larger number of high-risk patients. Here we employed rat primary hepatocytes and microarray technique to understand underlying mechanism responsible for statin-induced liver toxicity on cell level. We isolated genes whose expressions were commonly modulated by statin treatments and examined their biological functions. It is of interest that those genes have function related to response to stress in particular immunity and defense in cells. Our study provided the basic information on cellular mechanism of statin-induced cytotoxicity and may serve for finding indicator genes of statin -induced toxicity in rat primary hepatocytes.

Characteristics of Gene Structure of Bovine Ghrelin and Influence of Aging on Plasma Ghrelin

  • Kita, K.;Harada, K.;Nagao, K.;Yokota, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.723-727
    • /
    • 2005
  • Ghrelin is a novel growth-hormone-releasing acylated peptide, which has been purified and identified in rat stomach. In the present study, the full-length sequence of bovine ghrelin cDNA was cloned by RT-PCR. The bovine ghrelin cDNA sequence derived in the present study included a 348 bp open reading frame and a 137 bp 3'UTR. The putative amino acid sequence of bovine prepro-ghrelin consisted of 116 amino acids, which contained the 27-amino acid ghrelin. The sequence analysis of the bovine ghrelin gene revealed that an intron existed between Gln$^{13}$ and Arg$^{14}$ of ghrelin. This exon-intron boundary matched the GT-AG rule of the splicing mechanism. Compared with rats, which have two tandem CAG sequences in the 3'end of intron, bovine ghrelin genome has only one CAG sequence. Therefore, although rats can produce 28 amino acid-ghrelin and 27 amino acid-des-Gln$^{14}$-ghrelin by alternative splicing, ruminant species, including bovines, might be able to produce only one type of ghrelin peptide, des-Gln$^{14}$-ghrelin. The influence of aging on plasma ghrelin concentration was also examined. Plasma ghrelin concentration increased after birth to approximately 600 days of age, and then remained constant.

Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

  • Lee, Jeong Hyo;Kim, Si Won;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.743-748
    • /
    • 2017
  • Objective: Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9) to modulate the specific target gene in chicken DF1 cells. Methods: Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP) gene and targeted multiplex guide RNAs (gRNAs), the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results: Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion: The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

In Vivo Excision and Amplification of Large Human Genomic Segments Using Cre/loxP-and EBNA-1/oriP-mediated Machinery

  • Yoon, Young-Geol;Choi, Ja-Young;Kim, Jung-Min;Lee, Jun-Hyoung;Kim, Sun-Chang
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.322-328
    • /
    • 2001
  • Excision and amplification of pre-determined, large genomic segments (taken directly from the genome of a natural host, which provides an alternative to conventional cloning in foreign vectors and hosts) was explored in human cells. In this approach, we devised a procedure for excising a large segment of human genomic DNA, the iNOS gene, by using the Cre/loxP system of bacteriophage P1 and amplifying the excised circles with the EBNA-1/oriP system of the Epstein-Barr virus. Two loxP sequences, each of which serves as a recognition site for recombinase Cre, were integrated unidirectionally into the 5'-UTR and 3'-UTR regions of the iNOS gene, together with an oriP sequence for conditional replication. The traps-acting genes cre and EBNA-1, which were under the control of a tetracycline responsive $P_{hcmv^*-1}$ promoter, were also inserted into the 5'-UTR and 3'-UTR regions of the iNOS gene, respectively, by homologous recombination. The strain carrying the inserted elements was stably maintained until the excision and amplification functions were triggered by the induction of cre and EBNA-1. Upon induction by doxycycline, Cre excised the iNOS gene that was flanked by two ZoxP sites and circularized it. The circularized iNOS gene was then amplified by the EBNA-1/oriP-system. With this procedure, approximately a 45.8-kb iNOS genomic fragment of human chromosome 17 was excised and successfully amplified in human cells. Our procedure can be used effectively for the sequencing of unclonable genes, the functional analysis of unknown genes, and gene therapy.

  • PDF

Multiple roles of phosphoinositide-specific phospholipase C isozymes

  • Suh, Pann-Ghill;Park, Jae-Il;Manzoli, Lucia;Cocco, Lucio;Peak, Joanna C.;Katan, Matilda;Fukami, Kiyoko;Kataoka, Tohru;Yun, Sang-Uk;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.415-434
    • /
    • 2008
  • Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.