• Title/Summary/Keyword: Genome Analysis

Search Result 2,364, Processing Time 0.032 seconds

Association between SMAD2 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Sull, Jae Woong;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Genome-wide association studies (GWAS) have identified a number of common variants associated with serum liver enzyme homeostasis in population. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in European population. We aimed to confirm whether the genetic variation of SMAD2 (SMAD family member 2) gene influence the serum liver enzyme levels in Korean population. We genotyped variants in or near SMAD2 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SMAD2 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the SMAD2 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs17736760 (${\beta}$=3.51, P=5.31E-07) with glutamic oxaloacetic transferase (GOT), rs17736760 (${\beta}$=5.99, P=1.25E-05) with glutamic pyruvate transaminase (GPT), and rs17736760 (${\beta}$=15.68, P=9.93E-07) with gamma glutamyl transferase (GGT) in all group. Furthermore, the SNP rs17736760 was consistently associated with GOT (${\beta}$=5.25, P=1.72E-06), GPT (${\beta}$=9.97, P=1.16E-05), GGT (${\beta}$=26.13, P=3.43E-06) in men group. Consequently, we found statistically significant SNP in SMAD2 gene that are associated with serum levels of GOT, GPT, and GGT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SMAD2 gene may be more elevated serum liver enzyme levels in the Korean population.

Development of Transgenic Tall Fescue Plants from Mature Seed-derived Callus via Agrobacterium-mediated Transformation

  • Lee, Sang-Hoon;Lee, Dong-Gi;Woo, Hyun-Sook;Lee, Byung-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1390-1394
    • /
    • 2004
  • We have achieved efficient transformation system for forage-type tall fescue plants by Agrobacterium tumefaciens. Mature seed-derived embryogenic calli were infected and co-cultivated with each of three A. tumefaciens strains, all of which harbored a standard binary vector pIG121Hm encoding the neomycin phosphotransferase II (NPTII), hygromycin phosphotransferase (HPT) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. Transformation efficiency was influenced by the A. tumefaciens strain, addition of the phenolic compound acetosyringone and duration of vacuum treatment. Of the three A. tumefaciens strains tested, EHA101/pIG121Hm was found to be most effective followed by GV3101/pIG121Hm and LBA4404/pIG121Hm for transient GUS expression after 3 days co-cultivation. Inclusion of 100 $\mu$M acetosyringone in both the inoculation and co-cultivation media lead to an improvement in transient GUS expression observed in targeted calli. Vacuum treatment during infection of calli with A. tumefaciens strains increased transformation efficiency. The highest stable transformation efficiency of transgenic plants was obtained when mature seed-derived calli infected with A. tumefaciens EHA101/pIG121Hm in the presence of 100 $\mu$M acetosyringone and vacuum treatment for 30 min. Southern blot analysis indicated integration of the transgene into the genome of tall fescue. The transformation system developed in this study would be useful for Agrobacterium-mediated genetic transformation of tall fescue plants with genes of agronomic importance.

Reproductive Biotechnologies for Improvement of Buffalo: The Current Status

  • Purohit, G.N.;Duggal, G.P.;Dadarwal, D.;Kumar, Dinesh;Yadav, R.C.;Vyas, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1071-1086
    • /
    • 2003
  • Reproductive biotechnologies continue to be developed for genetic improvement of both river and swamp buffalo. Although artificial insemination using frozen semen emerged some decades back, there are still considerable limitations. The major problem appears to be the lack of efficient methods for estrus detection and timely insemination. Controlled breeding experiments in the buffalo had been limited and similar to those applied in cattle. Studies on multiple ovulation and embryo transfer are essentially a replica of those in cattle, however with inherent problems such as lower number of primordial follicles on the buffalo ovary, poor fertility and seasonality of reproduction, lower population of antral follicles at all stages of the estrous cycle, poor endocrine status and a high incidence of deep atresia in ovarian follicles, the response in terms of transferable embryo recovery has remained low with 0.51 to 3.0 per donor and pregnancy rates between 15 to 30%. In vitro production of buffalo embryos is a valid alternative to recovery of embryos by superovulation. This aspect received considerable attention during the past decade, however the proportion of embryos that develops to the blastocyst stage is still around 25-30% and hence the in vitro culture procedures need substantial improvement. Embryo cryopreservation procedures for direct transfer post thaw need to be developed for bubaline embryos. Nuclear transfer and embryo cloning is a technique that has received attention in various species during recent years and can be of immense value in buffaloes as they have a low rate of embryo recoveries by both in vitro and in vivo procedures. Gender pre-selection, genome analysis, gene mapping and gene transfer are a few of the techniques that have been studied to a limited extent during recent years and are likely to be included in future studies on buffaloes. Very recently, reproductive biotechnologies have been applied to feral buffaloes as well, but the results obtained so far are modest. When fully exploited they can play an important role in the preservation of endangered species.

Assessment of Genetic Variability in Two North Indian Buffalo Breeds Using Random Amplified Polymorphic DNA (RAPD) Markers

  • Sodhi, M.;Mukesh, M.;Anand, A.;Bhatia, S.;Mishra, B.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1234-1239
    • /
    • 2006
  • Murrah and NiliRavi are the important North Indian buffalo breeds occupying the prominent position of being the highest milk producers. These breeds are more or less similar at morphological as well as physiological levels. The technique of RAPD-PCR was applied in the present study to identify a battery of suitable random primers to detect genetic polymorphism, elucidation of the genetic structure and rapid assessment of the differences in the genetic composition of these two breeds. A total of 50 random primers were screened in 24 animals each of Murrah and NiliRavi buffaloes to generate RAPD patterns. Of these, 26 (52%) primers amplified the buffalo genome generating 263 reproducible bands. The number of polymorphic bands for the 26 chosen RAPD primers varied from 3 (OPG 06 and B4) to 26 (OPJ 04) with an average of 10.1 bands per primer and size range of 0.2 to 3.2 kb. DNA was also pooled and analyzed to search for population specific markers. Two breed specific RAPD alleles were observed in each of Murrah (OPA02 and OPG16) and NiliRavi (OPG09) DNA pools. RAPD profiles revealed that 11 (4.2%) bands were common to all the 48 individuals of Murrah and NiliRavi buffaloes. Pair-wise band sharing calculated among the individual animals indicated considerable homogeneity of individuals within the breeds. Within breed, band sharing values were relatively greater than those of interbreed values. The low genetic distance (Nei's) value (0.109) estimated in this study is in accordance with the origin and geographical distribution of these breeds. The RAPD analysis indicated high level of genetic similarity between these two important North Indian buffalo breeds.

Molecular Prognostic Profile of Egyptian HCC Cases Infected with Hepatitis C Virus

  • Zekri, Abdel-Rahman N.;Hassan, Zeinab K.;Bahnassy, Abeer A.;Sherif, Ghada M.;ELdahshan, Dina;Abouelhoda, Mohamed;Ali, Ahmed;Hafez, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5433-5438
    • /
    • 2012
  • Background: Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. Patients and Methods: Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. Result: Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein ($AFP{\geq}600$ IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. Conclusion: The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.

Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

  • Nguyen, Thao Thi;Lee, Hyun-Hee;Park, Inmyoung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

Cholic Acid Attenuates ER Stress-Induced Cell Death in Coxsackievirus-B3 Infection

  • Han, Jae-Young;Jeong, Hae In;Park, Cheol-Woo;Yoon, Jisoo;Ko, Jaeyoung;Nam, Sang-Jip;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.109-114
    • /
    • 2018
  • Coxsackievirus Type B3 (CVB3) is an enterovirus that belongs to the Picornaviridae and causes various diseases such as myocarditis and hand-foot-mouth disease. However, an effective antiviral drug is still not developed. In this study, we looked for potential inhibitors of CVB3 replication by examining the survival of CVB3-infected HeLa cells. We detected an antiviral effect by cholic acid and identified it as a candidate inhibitor of CVB3 replication. Cholic acid circulates in the liver and intestines, and it helps the digestion and absorption of lipids in the small intestine. HeLa cells were cultured in 12-well plates and treated with cholic acid (1 and $10{\mu}g/ml$) and $10^6PFU/ml$ of CVB3. After 16 h post-infection, the cells were lysed and subjected to western blot analysis and RT-PCR. The production of the viral capsid protein VP1 was dramatically decreased, and translation initiation factor eIF4G1 cleavage was significantly inhibited by treatment with $10{\mu}g/ml$ cholic acid. Moreover, cholic acid inhibited ERK signaling in CVB3-infected HeLa cells. RT-PCR showed that the amounts of the CVB3 RNA genome and mRNA for the ER stress-related transcription factor ATF4 were significantly reduced. These results showed that cholic acid strongly reduced ER stress and CVB3 proliferation. This compound can be developed as a safe natural therapeutic agent for enterovirus infections.

Transcriptome analysis of the livers of ducklings hatched normally and with assistance

  • Liu, Yali;He, Shishan;Zeng, Tao;Du, Xue;Shen, Junda;Zhao, Ayong;Lu, Lizhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.773-780
    • /
    • 2017
  • Objective: "Hatchability" is an important economic trait in domestic poultry. Studies on poultry hatchability focus mainly on the genetic background, egg quality, and incubation conditions, whereas the molecular mechanisms behind the phenomenon that some ducklings failed to break their eggshells are poorly understood. Methods: In this study, the transcriptional differences between the livers of normally hatched and assisted ducklings were systematically analyzed. Results: The results showed that the clean reads were de novo assembled into 161,804 and 159,083 unigenes (${\geq}200-bp$ long) by using Trinity, with an average length of 1,206 bp and 882 bp, respectively. The defined criteria of the absolute value of log2 fold-change ${\geq}1$ and false discovery rate${\leq}0.05$ were differentially expressed and were significant. As a result, 1,629 unigenes were identified, the assisted ducklings showed 510 significantly upregulated and 1,119 significantly down-regulated unigenes. In general, the metabolic rate in the livers of the assisted ducklings was lower than that in the normal ducklings; however, compared to normal ducklings, glucose-6-phosphatase and ATP synthase subunit alpha 1 associated with energy metabolism were significantly upregulated in the assisted group. The genes involved in immune defense such as major histocompatibility complex (MHC) class I antigen alpha chain and MHC class II beta chain 1 were downregulated in the assisted ducklings. Conclusion: These data provide abundant sequence resources for studying the functional genome of the livers in ducks and other poultry. In addition, our study provided insight into the molecular mechanism by which the phenomenon of weak embryos is regulated.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.