• Title/Summary/Keyword: Genetic translocation

Search Result 74, Processing Time 0.022 seconds

Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells

  • Kim, Dae-Won;Kim, So-Young;Lee, Hwa;Lee, Yeum-Pyo;Lee, Min-Jung;Jeong, Min-Seop;Jang, Sang-Ho;Park, Jin-Seu;Lee, Kil-Soo;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • In protein therapy, it is important for exogenous protein to be delivered into the target subcellular localization. To transduce a therapeutic protein into its specific subcellular localization, we synthesized nuclear localization signal (NLS) and membrane translocation sequence signal (MTS) peptides and produced a genetic in-frame SOD fusion protein. The purified SOD fusion proteins were efficiently transduced into mammalian cells with enzymatic activities. Immunofluorescence and Western blot analysis revealed that the SOD fusion proteins successfully transduced into the nucleus and the cytosol in the cells. The viability of cells treated with paraquat was markedly increased by the transduced fusion proteins. Thus, our results suggest that these peptides should be useful for targeting the specific localization of therapeutic proteins in various human diseases.

Myeloid-specific SIRT1 Deletion Aggravates Hepatic Inflammation and Steatosis in High-fat Diet-fed Mice

  • Kim, Kyung Eun;Kim, Hwajin;Heo, Rok Won;Shi, Hyun Joo;Yi, Chin-ok;Lee, Dong Hoon;Kim, Hyun Joon;Kang, Sang Soo;Cho, Gyeong Jae;Choi, Wan Sung;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.451-460
    • /
    • 2015
  • Sirtuin 1 (SIRT1) is a mammalian $NAD^+$-dependent protein deacetylase that regulates cellular metabolism and inflammatory response. The organ-specific deletion of SIRT1 induces local inflammation and insulin resistance in dietary and genetic obesity. Macrophage-mediated inflammation contributes to insulin resistance and metabolic syndrome, however, the macrophage-specific SIRT1 function in the context of obesity is largely unknown. C57/BL6 wild type (WT) or myeloid-specific SIRT1 knockout (KO) mice were fed a high-fat diet (HFD) or normal diet (ND) for 12 weeks. Metabolic parameters and markers of hepatic steatosis and inflammation in liver were compared in WT and KO mice. SIRT1 deletion enhanced HFD-induced changes on body and liver weight gain, and increased glucose and insulin resistance. In liver, SIRT1 deletion increased the acetylation, and enhanced HFD-induced nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$), hepatic inflammation and macrophage infiltration. HFD-fed KO mice showed severe hepatic steatosis by activating lipogenic pathway through sterol regulatory element-binding protein 1 (SREBP-1), and hepatic fibrogenesis, as indicated by induction of connective tissue growth factor (CTGF), alpha-smooth muscle actin (${\alpha}$-SMA), and collagen secretion. Myeloid-specific deletion of SIRT1 stimulates obesity-induced inflammation and increases the risk of hepatic fibrosis. Targeted induction of macrophage SIRT1 may be a good therapy for alleviating inflammation-associated metabolic syndrome.

Molecular Breeding of Tobacco Plants Resistant to TMV and PVY (분자생물학적 TMV 및 PVY 저항성 연초 육종)

  • E.K. Pank;Kim, Y.H.;Kim, S.S.;Park, S.W.;Lee, C.H.;K.H.Paik
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1997.10a
    • /
    • pp.134-152
    • /
    • 1997
  • Plant viruses of tobacco including tobacco mosaic virus (TMV) and potato virus Y (PVY) cause severe economic losses in leaf-tobacco production. Cultural practices do not provide sufficient control against the viruses. Use of valuable resistant cultivars is most recommendable for the control of the viruses. However, conventional breeding programs are not always proper for the development of virus-resistant plants mostly owing to the frequent lack of genetic sources and introduction of their unwanted properties. Therefore, we tried to develop virus-resistant tobacco plants by transforming commercial tobacco cultivars, NC 82 and Burley 21, with coat protein (CP) or replicase (Nlb) genes of TMV and PVY necrosis strain (PVY-VN) with or without untranslated region (UTR) and with or without mutation. Each cDNA was cloned and inserted in plant expression vectors with 1 or 2 CaMV 35S promotors, and introduced into tobacco leaf tissues by Agrobacterium tumefaciens LBA 4404. Plants were regenerated in kanamycin-containing MS media. Regenerated plants were tested for resistance to TMV and PVY In these studies, we could obtain a TMV-resistant transgenic line transformed with TMV CP and 6 genetic lines with PVY-VN cDNAs out of 8 CP and replicase genes. In this presentation, resistance rates, verification of gene introduction in resistant plants, stability of resistance through generations, characteristics of viral multiplication and translocation in resistant plants, and resistance responses relative to inoculum potential and to various PVY strains will be shown. Yield and quality of leaf tobacco of a promising resistant tobacco line will be presented.

  • PDF

An Evaluation of Polycross Progenies for Leaf and Plant Characteristics in Winter Active Tall Fescue (Festuca arundinacea Schreb.) - I. Summer Forage Phase (동기생육형(冬期生育型) 톨페스큐의 엽(葉)및 지상부형질(地上部形質)에 관(關)한 다교배(多交配) 후대검정(後代檢定))

  • Kim, Dal Ung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.357-373
    • /
    • 1975
  • This study was conducted to evaluate the winter active polycross progenies of 10 genotypes selected at the hot and dry climate of the Southern Oregon in their performance in the progeny test comparing with a high yielding variety, 'Fawn', and a winter active variety, 'TFM', as the control varieties at Daejon, Korea. Various plant and leaf characteristics, especially which related to photosynthesis, and forage production during the first summer after their establishment, were examined. The important conclusions of this study are summarized as follows: 1. The winter active genotypes and variety had less leaf fresh weight and dry weight per leaf than variety 'Fawn'. Variations among polycross progenies of genotypes for these characteristics were great. 2. The winter active genotypes and variety had less leaf area per leaf than variety 'Fawn'. Leaf area among polycross progenies of genotypes deviated greatly and poly cross progenies of 'genotype-16' had the same average leaf area as 'Fawn'. 3. Differences of specific leaf weight (S. L. W.) in the winter active genotypes and variety were not significant. Probably the genetic diversity for S. L. W were not big and were narrowed down already in this genetic population. It was suggested that the photosynthate production within the population might not be different and there might be differences in the photosynthate production-translocation balance. Further study for the diurnal change in S. L. W. within the population might be useful. 4. The winter active variety and genotypes had less leaf width than 'Fawn' does. Leaf width among polycross progenies of genotypes deviated significantly. 5. Differences among controls and polycross progeny group in the initial plant height were significant and variety 'Fawn' was taller than the winter active genotypes and variety. But the differences were not significant in the regrowth of plant height after the first forage harvest. On the contrary. the differences among polycross progenies of genotypes were not significant in the initial plant but the differences in their polycross progeny performance became obvious and great in the regrowth ability which is an improtent agronomic characteristics for forage crops produced in the pasture and for hay and silage. 6. Plant width of the winter active genotypes and variety was lesser than 'Fawn' variety. 7. Differences of tiller number became evident and variety 'Fawn' had higher tiller number than the winter active genotypes and variety after the first forage cutting. There, deviations among polycross progenies of genotypes were great for this characteristic. It was obvious that the genetic differences became more evident in the second measurement after the first cutting of forage probably because this characteristic were stimulated by defoliation in the cartain genotypes and variety. 8. The winter active genotypes and variety on the initial growth. the regrowth ability andtotal yield had lesser forage yield than variety 'Fawn'. Deviation of forage yield among polycross progenies of genotypes were great and gave basis for selection according to their polycross progeny performance improving the forage yield of these winter active tall fescue population during summer. 9. It was concluded that the winter active variety and genotypes in this study was poorer than variety 'Fawn' for the most of leaf and plant characteristics including forage yield. For these measurements, the variations among polycross progenies of genotypes were great. and plant breeding might able to improve further this winter active tall fescue through the polycross progeny testing method for the higher forage production during summer in Korea. 10. The result of the associations among various characteristics under study were quite agreeable with the results of the analysis of variance and woul be useful in the selection of desirable genotypes for the development of a new variety.

  • PDF