• 제목/요약/키워드: Genetic transformation

검색결과 435건 처리시간 0.027초

심비디움 육종, 조직배양 및 형질전환 연구동향에 관한 고찰 (Review on breeding, tissue culture and genetic transformation systems in Cymbidium)

  • 이유미;김미선;이상일;김종보
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.357-369
    • /
    • 2010
  • Cymbidium is horticulturally important and has been one of the most commercially successful orchid plants as well as cut flowers around the world including Korea. Up to now, a huge number of elite Cymbidium cultivars have been released on the commercial market via cross-hybridization, mutation and polyploidization breeding techniques. To investigate on breeding system in Cymbidium, we inquired the brief history and techniques of breeding and the current status on Cymbidium breeding in Korea. Also, the general propagation process of elite Cymbidium lines via tissue culture should be presented. However, the slow process of conventional breeding and the lack of useful genes in Cymbidium species delays the introduction of new cultivars to the commercial market. To solve these limitations, efficient regeneration and genetic transformation systems should be established in the improvement of Cymbidium breeding program. During the last several decades, some progress has been made in tissue culture and genetic transformation in Cymbidium species. We review the recent status of tissue culture and genetic transformation systems in Cymbidium plants.

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • 제49권2호
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

IMPROVEMENT OF GENETIC TRANSFORMATION SYSTEM IN ASPERGILLUS ORYZAE

  • Lee, Jae-Won;Hahm, Young-Tae
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.215-218
    • /
    • 2000
  • A. oryzae에 있어서 protoplast를 이용한 형질전환이 아닌 세포벽이 부분적으로 분해된 cell을 이용하여 electroporation으로 형질전환시켰고, novozyme234, hemicellulase와 celluclast를 사용하여 형질전환 효율이 어떻게 다른지를 비교 분석 하였다. Hemicellulase를 $^{\sim}10^8$ cell에 처리하여 A. oryzae에서 83 transformants/10ug of DNA를 얻었고, novozyme234와 celluclast를 사용하였을 때는 4.3 transformants/10ug of DNA를 얻었다.

  • PDF

Bioloistic-mediated Transformation of Cotton (Gossypium hirsutum L.): Embryogenic Calli as Explant

  • Haq Ikram-ul;Asad Shaheen;Zafar Yusuf
    • Journal of Plant Biotechnology
    • /
    • 제7권4호
    • /
    • pp.211-218
    • /
    • 2005
  • Genetic transformation was carried out by using biolistic gun method. The hypocotyl derived embryogenic calli (explants) of cotton (Gossypium hirsutum L.) cv. Cocker-312 were transformed with a recombinant pGreen II plasmid, in which both, bar (selection marker) and GUS (${\beta}$-glucuronidase) reporter genes were incorporated. Explants were arranged on osmoticum-containing medium (0.5M mannitol) 4 hours prior to and 16 hours after bombardment that was resulted into an increase about >80% for GUS stable expression. 3 days after bombardment, GUS assay was performed, which exhibited, $18.36{\pm}1.00$ calli showed blue spots. The transformed embryogenic calli were cultured on selection medium (@ 6 mg/L basta) for 3 months. The putative transgenic plants were developed via selective somatic embryogenesis (@1.50 mg/L basta); maximum $27.58{\pm}1.25$ somatic embryos were obtained while $17.47{\pm}1.00$ embryos developed into plantlets (@ 0.75mg/L basta). In five independent experiments, up to 7.24% transformation efficiency was recorded. The presence of the transgenes was analyzed by using PCR and southern hybridization analysis. The transgenic plants were developed with in 6-7 months, but mostly transformants were abnormal in morphology.

Genetic Transformation of the Yeast Dekkera/Brettanomyces bruxellensis with Non-Homologous DNA

  • Miklenic, Marina;Stafa, Anamarija;Bajic, Ana;Zunar, Bojan;Lisnic, Berislav;Svetec, Ivan-Kresimir
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.674-680
    • /
    • 2013
  • Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/${\mu}g$ DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

Malignant transformation of oral lichen planus and related genetic factors

  • Hwang, Eurim C.;Choi, Se-Young;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제45권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Oral lichen planus (OLP) is a chronic inflammatory disease observed in approximately 0.5-2.2% of the population, and it is recognized as a premalignant lesion that can progress into oral squamous cell carcinoma (OSCC). The rate of malignant transformation is approximately 1.09-2.3%, and the risk factors for malignant transformation are age, female, erosive type, and tongue site location. Malignant transformation of OLP is likely related to the low frequency of apoptotic phenomena. Therefore, apoptosis-related genetic factors, like p53, BCL-2, and BAX are reviewed. Increased p53 expression and altered expression of BCL-2 and BAX were observed in OLP patients, and the malignant transformation rate in these patients was relatively higher. The involvement of microRNA (miRNA) in the malignant transformation of OLP is also reviewed. Because autophagy is involved in cell survival and death through the regulation of various cellular processes, autophagy-related genetic factors may function as factors for malignant transformation. In OLP, decreased levels of ATG9B mRNA and a higher expression of IGF1 were observed, suggesting a reduction in cell death and autophagic response. Activated IGF1-PI3K/AKT/mTor cascade may play an important role in a signaling pathway related to the malignant transformation of OLP to OSCC. Recent research has shown that miRNAs, such as miR-199 and miR-122, activate the cascade, increasing the prosurvival and proproliferative signals.

Agrobacterium-mediated Transformation of the Winter Mushroom, Flammulina velutipes

  • Cho, Jung-Hee;Lee, Seung-Eun;Chang, Who-Bong;Cha, Jae-Soon
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.104-107
    • /
    • 2006
  • Flammulina velutipes was transformed efficiently by Agrobacterium-mediated transformation system. The transformation frequency was about 16% with the gill tissues of the fungal fruiting body. Southern hybridization and genetic analysis suggest that the introduced DNA was inserted onto different locations of the fungal genome, and inherited stably to the next generation via basidiospores. Transformation or gene tagging with Agrobacterium T-DNA based vector should be useful for wide ranges of genetic or molecular biological studies of the mushroom.

Automatic Generalization of Image Transformation Processes Using a Genetic Algorithm

  • Masunaga, Shinya;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.101-106
    • /
    • 1997
  • A method is proposed to generalize the image transformation from an image to another one according to a pair of example images. When an original image and its target image are given, the unknown image transformation from the original image to the target one in automatically approximated by a sequence of several known image transformation filters by the method. The target image is assumed to be generated manually by using a drawing software. In this method, the order of image transformation filers is regarded as the chromosome of a virtual living thing and is evolved according to Genetic Algorithm. This method can be applied to automatic construction of expert systems for image processing.

  • PDF

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

  • Jung, Min;Shin, Sun-Hee;Park, Jeong-Mi;Lee, Sung-Nam;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Plant Biotechnology Reports
    • /
    • 제5권2호
    • /
    • pp.157-167
    • /
    • 2011
  • In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacteriummediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of $T_0$, $T_1$ and $T_2$ peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.