• 제목/요약/키워드: Genetic population

검색결과 2,231건 처리시간 0.033초

종묘방류 해역에서 채집 된 참전복의 microsatellte marker에 의한 유전 다양성 및 집단 구조 (Genetic Variability and Population Structure of Pacific Abalone Haliotis discus hannai Sampled from Stocked Areas Using Microsatellite DNA Markers)

  • 정달상;박철지;전창영
    • 한국수산과학회지
    • /
    • 제41권6호
    • /
    • pp.466-470
    • /
    • 2008
  • Microsatellite DNA markers were used to investigate the genetic diversity and population structure of Pacific abalone Haliotis discus hannai collected from six locations (Uljin, Ulsan, Daechon, Taean, Wando, and Yosu) where hatchery-produced abalone have been released intensively. There was no distinguishable difference in the observed and expected heterozygosities between the six populations and a cultured population. However, there was a difference in the number of alleles per locus: 12.8 for the cultured population and 13.8 to 15.8 for the six populations. The proportion of stocked abalone ranged from 41.1 to 92.7% for wild-caught populations with a decreasing tendency of alleles per locus for an increasing proportion of stocked abalone. A departure from Hardy-Weinberg equilibrium (HWE) assessed using the Markov chain procedure (P<0.05) was observed in the six populations and cultured population at loci Hdh145 and Hdh5l2. The pairwise Fst test (P<0.05) showed a significant difference between the Uljin and Ulsan populations and four remaining populations (Wando, Daechon, Yosu, and the cultured population), among which the Wando population differed less than the other three populations (Daechon, Yosu, and the cultured population).

Genetic Differences and Variation in Two Purple Washington Clam (Saxidomus purpuratus) Populations from South and North Korea

  • Yoon, Jong-Man;Park, Su-Young
    • 한국패류학회지
    • /
    • 제22권2호
    • /
    • pp.97-108
    • /
    • 2006
  • Genomic DNA samples isolated from geographical purple Washington clam (Saxidomus purpuratus) were obtained from two different regions in Korean Peninsula: Gunsan (Gunsan population; GSP), and Haeju (Haeju population; HJP), a collection area in the vicinity of the West Sea. The seven arbitrarily primers, OPA-07, OPA-09, OPA-18, OPA-20, OPC-03, OPC-06 and OPC-09 were shown to generate the total loci, loci observed per primer, shared loci by each population, specific, and polymorphic loci which could be clearly scored. We also generated the unique shared loci to each population and shared loci by the two populations in purple Washington clam. The size of the DNA fragments also varied wildly, from 50 to 2,400 bp. Here, 304 total loci were identified in the GSP purple Washington clam population, and 282 in the HJP: 91 polymorphic loci (29.9%) in the GSP and 47 (16.7) in the HJP. 198 shared loci, with an average of 28.3 per primer, were observed in the GSP population. The decamer primer OPA-07 generated the shared loci by the two populations, approximately 1,000 bp, between the two Saxidomus populations. The oligonucleotide primer OPC-03 also generated the shared loci by the two populations, approximately 500 bp and 1,000 bp, in GSP population from Gunsan and HJP population from Haeju. The other primer, OPC-06 generated the shared loci by two Gomphina populations (approximately 400 bp). The dendrogram, generated by seven reliable primers, indicates three genetic clusters. The dendrogram obtained by the seven primers indicates three genetic clusters: cluster 1 (GUNSAN 01-GUNSAN 02), cluster 2 (GUNSAN 03-GUNSAN 11), and cluster 3 (HAEJU 12-HAEJU 22). The genetic distance between the two geographical populations ranged from 0.043 to 0.506. Especially, the longest genetic distance displaying significant molecular differences, 0.506, was found to exist between individuals GUNSAN no. 11 of Gunsan and HAEJU no. 17 of Haeju.

  • PDF

Genetic Variations of Three Tegillarca granosa Populations Investigated by PCR Technique

  • Yoon, Jong-Man
    • 한국패류학회지
    • /
    • 제32권4호
    • /
    • pp.255-261
    • /
    • 2016
  • The selected seven oligonucleotides primers BION-32, BION-33, BION-35, BION-38, BION-40, BION-46 and BION-58 generated the shared loci, specific loci, unique shared loci to each population and shared loci by the three T. granosa populations in Beolgyo, a Chinese site and Wonsan, respectively. The bandsharing value between individuals' no. 03 and no. 04 was 0.816, which was the highest value identified within the Beolgyo population. The primer BION-35 generated the most loci (a total of 70), with an average of 10.0 in the Wonsan population. On average, seven oligonucleotides primers generated 16.1 specific loci in the Beolgyo population, 22.3 in the Chinese population and 39.3 in the Wonsan population. 126 unique shared loci to each population, with an average of 18 per primer, were observed in the Beolgyo population, 63 loci, with an average of 9 per primer, were observed in the Chinese population, and 49 loci, with an average of 7 per primer, and were observed in the Wonsan population. The oligonucleotides primer BION-32 generated 14 unique loci to each population, which were identifying each population in the Beolgyo population. Interestingly, every primer had not distinguished the shared loci by the three populations, major and/or minor fragments of sizes, which were identical in almost all of the samples. As regards average bandsharing value (BS) results, individuals from Beolgyo population ($0.717{\pm}0.057$) exhibited higher BS values than did those from Wonsan population ($0.552{\pm}0.104$) (P < 0.05). The dendrogram resulted from truthful seven oligonucleotides primers, representing three genetic clusters comprising group I (BEOLGYO 01, 02, 03, 04, 05, 06 and 07), group II (CHINESE 08, 09, 10, 11, 12, 13 and 14) and group III (WONSAN 15, 16, 17, 18, 19, 20 and 21). In three T. granosa populations, the longest genetic distance (0.874) displaying significant molecular difference was also between individual no. 02 within the Beolgyo population and individual no. 12 within the Chinese population. Relatively, individuals of the CHINESE population were fairly closely related to those of the WONSAN population.

Assessment of genetic diversity and phylogenetic relationship of Limousin herds in Hungary using microsatellite markers

  • Szucs, Marton;Szabo, Ferenc;Ban, Beata;Jozsa, Csilla;Rozsa, Laszlo;Zsolnai, Attila;Anton, Istvan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.176-182
    • /
    • 2019
  • Objective: This study was conducted to investigate basic information on genetic structure and characteristics of Limousin population in Hungary. Obtained results will be taken into consideration when adopting the new breeding strategy by the Association of Hungarian Limousin and Blonde d'Aquitaine Breeders (AHLBB). Methods: Genetic diversity and phylogenetic relationship of 3,443 Limousin cattle from 16 different herds were investigated by performing genotyping using 18 microsatellite markers. Amplified DNA was genotyped using an automated genetic analyzer. Results: Mean of effective alleles ($n_e$) of the populations was 3.77. Population C had the lowest number of effective alleles (3.01) and the lowest inbreeding coefficient ($F_{IS}$) value (-0.15). Principal component analysis of estimated genetic distance ($F_{ST}$) values (p<0.000) revealed two herds (C and E) distinct from the majority of other Limousin herds. The pairwise $F_{ST}$ values of population C compared to the others (0.066 to 0.120) fell into the range of moderate genetic distance: 0.050 to 0.150, while population E displayed also moderate genetic distance ($F_{ST}$ values in range 0.052 to 0.064) but only to six populations (G, H, J, L, N, and P). $F_{ST(C-E)}$ was 0.148, all other pairs -excluding C and E herds- displayed low genetic distance ($F_{ST}$<0.049). Population D, F, I, J, K, L, N, O, and P carried private alleles, which alleles belonged to 1.1% of the individuals. Most probable number of clusters (K) were 2 and 7 determined by Structure and BAPS software. Conclusion: This study showed useful genetic diversity and phylogenetic relationship data that can be utilized for the development of a new breeding strategy by AHLBB. The results presented could also contribute to the proper selection of animals for further whole genome scan studies of Limousins.

Single nucleotide polymorphism-based analysis of the genetic structure of Liangshan pig population

  • Liu, Bin;Shen, Linyuan;Guo, Zhixian;Gan, Mailing;Chen, Ying;Yang, Runling;Niu, Lili;Jiang, Dongmei;Zhong, Zhijun;Li, Xuewei;Zhang, Shunhua;Zhu, Li
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1105-1115
    • /
    • 2021
  • Objective: To conserve and utilize the genetic resources of a traditional Chinese indigenous pig breed, Liangshan pig, we assessed the genetic diversity, genetic structure, and genetic distance in this study. Methods: We used 50K single nucleotide polymorphism (SNP) chip for SNP detection of 139 individuals in the Liangshan Pig Conservation Farm. Results: The genetically closed conserved population consisted of five overlapping generations, and the total effective content of the population (Ne) was 15. The whole population was divided into five boar families and one non-boar family. Among them, the effective size of each generation subpopulation continuously decreased. However, the proportion of polymorphic markers (PN) first decreased and then increased. The average genetic distance of these 139 Liangshan pigs was 0.2823±0.0259, and the average genetic distance of the 14 boars was 0.2723±0.0384. Thus, it can be deduced that the genetic distance changed from generation to generation. In the conserved population, 983 runs of homozygosity (ROH) were detected, and the majority of ROH (80%) were within 100 Mb. The inbreeding coefficient calculated based on ROH showed an average value of 0.026 for the whole population. In addition, the inbreeding coefficient of each generation subpopulation initially increased and then decreased. In the pedigree of the whole conserved population, the error rate of paternal information was more than 11.35% while the maternal information was more than 2.13%. Conclusion: This molecular study of the population genetic structure of Liangshan pig showed loss of genetic diversity during the closed cross-generation reproduction process. It is necessary to improve the mating plan or introduce new outside blood to ensure long-term preservation of Liangshan pig.

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Genetic Analysis of Three River Populations of Catla catla (HAMILTON) Using Randomly Amplified Polymorphic DNA Markers

  • Islam, M.S.;Ahmed, A.S.I.;Azam, M.S.;Alam, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.453-457
    • /
    • 2005
  • The genetic variations in three major river populations viz. the Halda, the Jamuna and the Padma of the Indian major carp, Catla catla were analyzed by Random Amplified Polymorphic DNA (RAPD) markers. Four decamer primers were used for amplifying DNA of 10 individuals from each population. The proportion of polymorphic loci and the gene diversity estimates were 59.4 and 0.20 for the Halda, 37.5 and 0.14 for the Jamuna and 46.9 and 0.16 for the Padma populations respectively indicating the existence of a relatively high level of genetic variation in the Halda river population. The inter-population similarity indices, gene flow and genetic distance values indicated that the Jamuna-Padma population pair of catla was genetically closer than the Halda-Jamuna and the Halda-Padma population pairs in compliance with the geographical distances among them. The coefficient of gene differentiation ($G_{ST}$=0.13) reflects some degree of genetic differentiation among three populations of catla studied. The data suggest that the RAPD technique could be used to discriminate different river populations of catla.

Effect of Population Reduction on mtDNA Diversity and Demographic History of Korean Cattle Populations

  • Dadi, Hailu;Lee, Seung-Hwan;Jung, Kyoung-Sup;Choi, Jae-Won;Ko, Moon-Suck;Han, Young-Joon;Kim, Jong-Joo;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1223-1228
    • /
    • 2012
  • The population sizes of three Korean indigenous cattle populations have been drastically reduced over the past decades. In this study, we examined the extent to which reduction in populations influenced genetic diversity, population structure and demographic history using complete mitochondrial DNA (mtDNA) control region sequences. The complete mtDNA control region was sequenced in 56 individuals from Korean Black (KB), Jeju Black (JEB) and Korean Brindle (BRI) cattle populations. We included 27 mtDNA sequences of Korean Brown (BRO) from the GenBank database. Haplotype diversity estimate for the total population was high (0.870) while nucleotide diversity was low (0.004). The KB showed considerably low nucleotide (${\pi}$ = 0.001) and haplotype (h = 0.368) diversities. Analysis of molecular variance revealed a low level of genetic differentiation but this was highly significant (p<0.001) among the cattle populations. Of the total genetic diversity, 7.6% was attributable to among cattle populations diversity and the rest (92.4%) to differences within populations. The mismatch distribution analysis and neutrality tests revealed that KB population was in genetic equilibrium or decline. Indeed, unless an appropriate breeding management practice is developed, inbreeding and genetic drift will further impoverish genetic diversity of these cattle populations. Rational breed development and conservation strategy is needed to safeguard these cattle population.

Genetic Characteristics of 207 Microsatellite Markers in the Korean Population and in other Asian Populations

  • Choi, Su-Jin;Song, Hye-Kyung;Jeong, Jae-Hwan;Jeon, In-Ho;Yoon, Ho-Sung;Chung, Ki Wha;Won, Yong-Jin;Choi, Je-Yong;Kim, Un-Kyung
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.301-304
    • /
    • 2008
  • Microsatellites, short tandem repeats, are useful markers for genetic analysis because of their high frequency of occurrence over the genome, high information content due to variable repeat lengths, and ease of typing. To establish a panel of microsatellite markers useful for genetic studies of the Korean population, the allele frequencies and heterozygosities of 207 microsatellite markers in 119 unrelated Korean, Indian and Pakistani individuals were compared. The average heterozygosity of the Korean population was 0.71, similar to that of the Indian and Pakistani populations. More than 80% of the markers showed heterozygosity of over 0.6 and were valuable as genetic markers for genome-wide screening for disease susceptibility loci in these populations. To identify the allelic distributions of the multilocus genetic data from these microsatellite markers, the population structures were assessed by clustering. These markers supported, with the most probability, three clustering groups corresponding to the three geographical populations. When we assumed only two hypothetical clusters (K), the Korean population was separate from the others, suggesting a relatively deep divergence of the Korean population. The present 207 microsatellite markers appear to reflect the historical and geographical origins of the different populations as well as displaying a similar degree of variation to that seen in previously published genetic data. Thus, these markers will be useful as a reference for human genetic studies on Asians.

Evaluation of selection program by assessing the genetic diversity and inbreeding effects on Nellore sheep growth through pedigree analysis

  • Illa, Satish Kumar;Gollamoori, Gangaraju;Nath, Sapna
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권9호
    • /
    • pp.1369-1377
    • /
    • 2020
  • Objective: The main objectives of the present study were to assess the genetic diversity, population structure and to appraise the efficiency of ongoing selective breeding program in the closed nucleus herd of Nellore sheep through pedigree analysis. Methods: Information utilized in the study was collected from the pedigree records of Livestock Research Station, Palamaner during the period from 1989 to 2016. Genealogical parameters like generation interval, pedigree completeness, inbreeding level, average relatedness among the animals and genetic conservation index were estimated based on gene origin probabilities. Lambs born during 2012 and 2016 were considered as reference population. Two animal models either with the use of Fi or ΔFi as linear co-variables were evaluated to know the effects of inbreeding on the growth traits of Nellore sheep. Results: Average generation interval and realized effective population size for the reference cohort were estimated as 3.38±0.10 and 91.56±1.58, respectively and the average inbreeding coefficient for reference population was 3.32%. Similarly, the effective number of founders, ancestors and founder genome equivalent of the reference population were observed as 47, 37, and 22.48, respectively. Fifty per cent of the genetic variability was explained by 14 influential ancestors in the reference cohort. The ratio fe/fa obtained in the study was 1.21, which is an indicator of bottlenecks in the population. The number of equivalent generations obtained in the study was 4.23 and this estimate suggested the fair depth of the pedigree. Conclusion: Study suggested that the population had decent levels of genetic diversity and a non-significant influence of inbreeding coefficient on growth traits of Nellore lambs. However, small portion of genetic diversity was lost due to a disproportionate contribution of founders and bottlenecks. Hence, breeding strategies which improve the genetic gain, widens the selection process and with optimum levels of inbreeding are recommended for the herd.