• Title/Summary/Keyword: Genetic operators

Search Result 209, Processing Time 0.034 seconds

A genetic algorithm for flexible assembly line balancing (유연조립라인 밸런싱을 위한 유전알고리듬)

  • Kim, Yeo-Geun;Kim, Hyeong-Su;Song, Won-Seop
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.425-428
    • /
    • 2004
  • Flexible assembly line (FAL) is a production system that assembles various parts in unidirectional flow line with many constraints and manufacturing flexibilities. In this research we deal with a FAL balancing problem with the objective of minimizing the maximum workload allocated to the stations. However, almost all the existing researches do not appropriately consider various constraints due to the problem complexity. Therefore, this thesis addresses a balancing problem of FAL with many constraints and manufacturing flexibilities, unlike the previous researches. To solve this problem we use a genetic algorithm (GA). To apply GA to FAL, we suggest a genetic representation suitable for FAL balancing and devise evaluation method for individual's fitness and genetic operators specific to the problem, including efficient repair method for preserving solution feasibility. The experimental results are reported.

  • PDF

Zone Clustering Using a Genetic Algorithm and K-Means (유전자 알고리듬과 K-평균법을 이용한 지역 분할)

  • 임동순;오현승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • The zone clustering problem arising from several area such as deciding the optimal location of ambient measuring stations is to devide the 2-dimensional area into several sub areas in which included individual zone shows simimlar properties. In general, the optimal solution of this problem is very hard to obtain. Therefore, instead of finding an optimal solution, the generation of near optimal solution within the limited time is more meaningful. In this study, the combination of a genetic algorithm and the modified k-means method is used to obtain the near optimal solution. To exploit the genetic algorithm effectively, a representation of chromsomes and appropriate genetic operators are proposed. The k-means method which is originally devised to solve the object clustering problem is modified to improve the solutions obtained from the genetic algorithm. The experiment shows that the proposed method generates the near optimal solution efficiently.

  • PDF

A Study on the Determination of Dosing Rate for the Water Treatment using Genetic-Fuzzy (유전-퍼지를 이용한 정수장 응집제 주입률 결정에 관한 연구)

  • 김용열;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.876-882
    • /
    • 1999
  • It is difficult to determine the feeding rate of coagulant in the water treatment process, due to nonlinearity, multivariables and slow response characteristics, etc. To deal with this difficulty, the genetic-fuzzy system was used in determining the feeding rate of the coagulant. The genetic algorithms are excellently robust in complex optimization problems. Since it uses randomized operators and searches for the best chromosome without auxiliary informations from a population consists of codings of parameter set. To apply this algorithms, we made the lookup table and membership function from the actual operation data of the water treatment process. We determined optimum dosages of coagulant(LAS) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

A Genetic Algorithm for Backup Virtual Path Routing in Multicast ATM Networks (멀티캐스트 ATM 망에서 대체가상결로의 설정을 위한 유전 알고리듬)

  • 김여근;송원섭;곽재승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.101-114
    • /
    • 2000
  • Multicasting is the simultaneous transmission of data to multiple destinations. In multicast ATM networks the effect of failures on transmission links or nodes can be catastrophic so that the issue of survivability is of great importance. However little attention has been paid to the problem of multicast restoration. This paper presents an efficient heuristic technique for routing backup virtual paths in ulticast networks with link failure. Genetic algorithm is employed here as a heuristic. In the application of genetic algorithm to the problem, a new genetic encoding and decoding method and genetic operators are proposed in this paper. The other several heuristics are also presented in order to assess the performance of the proposed algorithm. Experimental results demonstrate that our algorithm is a promising approach to solving the problem.

  • PDF

Satellite Customer Assignment: A Comparative Study of Genetic Algorithm and Ant Colony Optimization

  • Kim, Sung-Soo;Kim, Hyoung-Joong;Mani, V.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.40-50
    • /
    • 2008
  • The problem of assigning customers to satellite channels is a difficult combinatorial optimization problem and is NP-complete. For this combinatorial optimization problem, standard optimization methods take a large computation time and so genetic algorithms (GA) and ant colony optimization (ACO) can be used to obtain the best and/or optimal assignment of customers to satellite channels. In this paper, we present a comparative study of GA and ACO to this problem. Various issues related to genetic algorithms approach to this problem, such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. We also discuss an ACO for this problem. In ACO methodology, three strategies, ACO with only ranking, ACO with only max-min ant system (MMAS), and ACO with both ranking and MMAS, are considered. A comparison of these two approaches (i,e., GA and ACO) with the standard optimization method is presented to show the advantages of these approaches in terms of computation time.

  • PDF

Optimal Design of Satellite Customer Assignment using Genetic Algorithm (유전자알고리즘을 적용한 위성고객할당 최적 설계)

  • Kim, Sung-Soo;Kim, Choong-Hyun;Kim, Ki-Dong;Lee, Sun-Yeob
    • IE interfaces
    • /
    • v.19 no.4
    • /
    • pp.300-305
    • /
    • 2006
  • The problem of assigning customers to satellite channels is considered in this paper. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of GA with CPLEX8.1 is presented to show the advantages of this approach in terms of computation time and solution quality.

Variable length Chromosomes in Genetic Algorithms for Modeling the Class Boundaries

  • Bandyopadhyay, Sanghamitra;Pal, Sankar K.;Murthy, C.A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.634-639
    • /
    • 1998
  • A methodology based on the concept of variable string length GA(VGA) is developed for determining automatically the number of hyperplanes and their appropriate arrangement for modeling the class boundaries of a given training data set in RN. The genetic operators and fitness functionare newly defined to take care of the variability in chromosome length. Experimental results on different artificial and real life data sets are provided.

  • PDF

A Study on the Optimal Signal Timing for Area Traffic Control (지역 교통망 관리를 위한 최적 신호순서에 관한 연구)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.69-80
    • /
    • 1999
  • A genetic algorithm to determine the optimal signal sequence and double cycle pattern is described. The signal sequence and double cycle pattern are used as the input for TRANSYT to find optimal signal timing at each junction in the area traffic networks, In the genetic process, the partially matched crossover and simple crossover operators are used for evolution of signal sequence and double cycle pattern respectively. A special conversion algorithm is devised to convert the signal sequence into the link-stage assignment for TRANSYT. Results from tests using data from an area traffic network in Leicester region R are given.

  • PDF

A Mount Sequence Optimization for Multihead-Gantry Chip Mounters Using Genetic Algorithm (유전자 알고리즘을 이용한 멀티헤드 겐트리타입 칩마운터의 장착순서 최적화)

  • Lee, Jae-Young;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2450-2452
    • /
    • 2003
  • We present a method to increase the productivity of multihead-gantry chip mounters for PCB assembly lines. To minimize the assembly time, we generate the mount sequence using the genetic algorithm. The chromosome, fitness function, and operators are newly defined to apply the algorithm. Simulation results are presented to verified the usefulness of the method.

  • PDF

A MULTI-OBJECTIVE OPTIMIZATION FOR CAPITAL STRUCTURE IN PRIVATELY-FINANCED INFRASTRUCTURE PROJECTS

  • S.M. Yun;S.H. Han;H. Kim
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.509-519
    • /
    • 2007
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

  • PDF