Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.
A methodology is developed for designing the minimum-cost water distribution network. The method is based on network simulations and an optimization scheme using genetic algorithms. Being a stochastic optimization scheme, genetic algorithms have advantages over the conventional search algorithms in solving network problems known for their nonlinearities and herculean computational costs. While existing methods focus on the design of either entirely new or parallel augmentation of network systems, the proposed method can be applied to problems having both new branches of tree-type and paralle augmentation in loops. The applicability of the method was shown through a case study for Baekryeon water supply system. The optimized design resulted in the maximum 5.37% savings compared to the conventional design without optimization, while meeting the hydraulic constraints.
International Journal of Control, Automation, and Systems
/
v.4
no.5
/
pp.601-614
/
2006
In this paper, a study on task assignment strategies for a complex real-time network system is presented. Firstly, two task assignment strategies are proposed to improve previous strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, and also with optimizing system utilization through period modulation of the tasks. Consequently, the strategies aim at the optimizationto optimize of system performance with while still meeting real-time constraints. The proposed task assignment strategies are devised using the genetic algorithmswith heuristic real-time constraints in the generation of new populations. The strategies are differentiated by the optimization method of the two objectives-meeting end-to-end real-time constraints and optimizing system utilization: the first one has sequential genetic algorithm routines for the objectives, and the second one has one multiple objective genetic algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies and a well-known existing task assignment strategy using the BnB(Branch and Bound) optimization are compared with one other through some simulation tests. Through the comparison of the simulation results, the most adequate task assignment strategies are proposed for some as system requirements-: the optimization of system utilization, the maximization of running tasktasks, and the minimization of the number of network node nodesnumber for a network system.
Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
Proceedings of the KIEE Conference
/
2006.10a
/
pp.145-146
/
2006
본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.3
no.1
/
pp.105-111
/
1999
This Paper is about how to deside the best parameter of PID controller, using Genetic Algorithms and Neural Networks. Control by Genetic Algorithms, which is off-line pass, has weakness for disturbance. So we want to improve like followings by adding Neural Network to controller and putting it on line. First we find PID parameter by Genetic Algorithms in forward pass of Neural Network and set the best output condition according to the increasing number of generation. Second, we explain the adaptability for disturbance with simulation by correcting parameter by backpropagation learning rule by using the learning ability of Neural Network.
Habibi-Yangjeh, Aziz;Pourbasheer, Eslam;Danandeh-Jenagharad, Mohammad
Bulletin of the Korean Chemical Society
/
v.29
no.4
/
pp.833-841
/
2008
Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and $12.77{^{\circ}C}$, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = $40.7{^{\circ}C}$). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.729-731
/
2016
The efficiency of genetic algorithm may be improved, as genetic generation increases. However, a number of algorithms are needed until desired results are obtained. In addition, if Hoc unit increases when linked to a network, there may be a need to compare with all the cases, which would result in many algorithms at a time, and if a single process deals with such algorithms, the efficiency will decrease. Therefore, efficiency of overall network will be decreased in the end. Proposal algorithm in this thesis introduced cells, units of router group, for distributed processing of previous genetic algorithm. This thesis presented ways to reduce search delay time of overall network through cell-based genetic algorithm.
We show an application of a genetic algorithm to, control systems including neural networks. Genetic algorithms are getting more popular nowadays because of their simplicity and robustness. Genetic algorithms are global search techniques for optimization and many other problems. A feed-forward neural network which is widely used in control applications usually learns by error back propagation algorithm(EBP). But, when there exist certain constraints, EBP can not be applied. We apply a modified genetic algorithm to such a case. We show simulation examples of two cart-pole nonlinear systems: single pole and double pole.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.6
/
pp.767-772
/
2018
Recently, some meta-heuristic algorithms, such as GA(Genetic Algorithm) and GP(Genetic Programming), have been used to optimize CNN(Convolutional Neural Network). The CNN, which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, the recent attempts to automatically construct CNN architectures are investigated and analyzed. First, two GA based methods are summarized. One is the optimization of CNN structures with the number and size of filters, connection between consecutive layers, and activation functions of each layer. The other is an new encoding method to represent complex convolutional layers in a fixed-length binary string, Second, CGP(Cartesian Genetic Programming) based method is surveyed for CNN structure optimization with highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.
Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.