• Title/Summary/Keyword: Genetic mutation

Search Result 1,046, Processing Time 0.025 seconds

WIP ANALYSIS OF FLEXIBLE MANUFACTURING SYSTEM BY GENETIC ALGORITHMS (유전자 알고리즘을 이용한 유연생산시스템의 작업프로세스 스케쥴링분석)

  • 김정원
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.142-146
    • /
    • 1998
  • In this paper, we suggests a WIP(work in process) of FMS analysis methods based on the Genetic algorithm. We conjoined both the assignment and the scheduling problem in order to create a new representation scheme for a chromosome and a mutation operators.

  • PDF

Loss of Heterozygosity (LOH) on 17th and 18th Chromosome from Colorectal Carcinoma (대장암에서 17, 18번 염색체의 이형접합성 소실)

  • Lee, Jae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Colorectal carcinoma is occurred frequently to Korean and so ranked the fourth from various cancers. Due to western dietary life, this cancer has been increased continually. Therefore, the study will be needed to find a candidate gene involved in the development and progression of colorectal carcinoma and to diagnose and treatment helpfully. The striking feature from cancer suppressor genes is known for LOH (loss of heterozygosity), which is the method to find allele genetic loss or mutation of cancer cell. The purpose of this study was designed to find a carcinogenic gene from colon cancer using microsatellite marker on 17th and 18th chromosome from 30 subjects. The LOH was investigated in order of D18S59 57% (17/30), TP53CA 50% (15/30), D18S68 47% (14/30), D18S69 43% (13/30). The genetic mutation depends on loci of colorectal carcinoma was shown higher with 2.44 from colon cancer than with 1.25 from right colorectal carcinoma (p<0.032). The genetic mutation with lymph nodes was investigated higher with 2.69 at mutated group than with 1.14 at non-mutated group (p<0.003). At genetic mutated pattern depends on disease stage, there was higher significant difference at III-IV stage 2.50 than that of I-II stage 1.17, respectively (p=0.015). There was no difference at comparison between histological classification and serological CEA increase. The loss on 18q21 found in this study is highly recurrence loci and was observed 43% for Korean with high recurrence. Therefore, LOH is a very useful tool to detect 18q21 loci in clinical application, prior to the treatment of colorectal carcinoma. After the operation of colorectol carcinoma, the efficient application using LOH at operated part tissue which is designed to protect the recurrence as well as its cure will be needed.

  • PDF

A New Genetic Algorithm for Shortest Path Routing Problem (최단 경로 라우팅을 위한 새로운 유전자 알고리즘)

  • ;R.S. Ramakrishna
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1215-1227
    • /
    • 2002
  • This paper presents a genetic algorithmic approach to shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation that exchanges partial chromosomes (partial-routes) at positionally independent crossing sites and the mutation operation maintain the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types (network sizes and topologies) for almost all source-destination pairs.

Genetic and Expression Analysis of the SIRT1 Gene in Gastric Cancers

  • Zhang, Cao;Song, Jae-Hwi;Kang, Young-Whi;Yoon, Jung-Hwan;Nam, Suk-Woo;Lee, Jung-Young;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2010
  • Purpose: Silent mating-type information regulation 2 homologue 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase. SIRT1 plays an important role in the regulation of cell death/survival and stress response in mammals. The aim of this study was to investigate whether the SIRT1 gene is involved in the development or progression of gastric cancers. Materials and Methods: SIRT1 and p53 genes in 86 gastric cancers were examined for genetic alterations by PCR-single strand conformation polymorphism sequencing, as well as SIRT1 protein expression in 170 gastric cancers by immunohistochemistry. Results: In the genetic analysis, we found SIRT1 and p53 mutations in two and 12 cases, respectively. Two missense mutations, c.599 C>T (T200I) and c.1258 G>A (E420K), were detected in the SIRT1 gene coding region. The SIRT1 and p53 mutation were found in mutually exclusive gastric cancers. The immunohistochemistry revealed that SIRT1 overexpression was found in 95 (55.9%) of 170 gastric cancers. Altered SIRT1 expression was not statistically associated with clinicopathological parameters, including tumor differentiation, location, lymph node metastasis, or p53 expression. Two cases with an SIRT1 mutation showed increased SIRT1 expression. Conclusions: These results suggest that genetic alterations and overexpression of the SIRT1 gene may contribute to gastric cancer development.

Hereditary Breast Cancer in Korea

  • Kim, Sung-Won
    • Journal of Genetic Medicine
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • About 7% of all breast cancer (BC) cases result from a genetic predisposition, and approximately 1,000 patients develop hereditary BC (HBC) every year in Korea. BRCA1 and BRCA2 are the primary genes underlying HBC. The average cumulative risks in BRCA1 mutation carriers at 70 years of age are 65% (95% confidence interval 44-78%) for BC and 39% (18-54%) for ovarian cancer (OC). The corresponding estimates for BRCA2 are 45% (31-56%) and 11% (2.4-19%), respectively. The penetrance of BRCA mutations is not the same between patients and can depend on factors such as race and birth-cohort. The Korean Hereditary Breast Cancer (KOHBRA) study is a large prospective nationwide study that includes 39 participating centers. Between May 2007 and May 2010, the first phase of the KOHBRA study was planned and fulfilled successfully. The primary aim of phase I was to estimate the prevalence of BRCA1/2 mutations and OC among a high-risk group of patients with HBC and their families. According to data collected during phase I of the study, the prevalence and penetrance of BRCA mutations were comparable to corresponding data from Western countries. For the second phase of the KOHBRA study, we are currently investigating a Korean BRCA mutation prediction model, prognostic factors in BRCA-related BC, environmental/genetic modifiers, and implementing a genetic counseling network. The final goal of the KOHBRA study is to create clinical practice guidelines for HBC in Korea. In this article, I review the genetics of HBC, summarize the characteristics of Korean HBC, and discuss current and future HBC research in Korea.

A case of Noonan syndrome diagnosed using the facial recognition software (FACE2GENE)

  • Kim, Soo Kyoung;Jung, So Yoon;Bae, Seong Phil;Kim, Jieun;Lee, Jeongho;Lee, Dong Hwan
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.81-84
    • /
    • 2019
  • Clinicians often have difficulties diagnosing patients with subtle phenotypes of Noonan syndrome phenotypes. Facial recognition technology can help in the identification of several genetic syndromes with facial dysmorphic features, especially those with mild or atypical phenotypes. A patient visited our clinic at 5 years of age with short stature. She was administered growth hormone treatment for 6 years, but her growth curve was still below the 3rd percentile. She and her mother had wide-spaced eyes and short stature, but there were no other remarkable features of a genetic syndrome. We analyzed their photographs using a smartphone facial recognition application. The results suggested Noonan syndrome; therefore, we performed targeted next-generation sequencing of genes associated with short stature. The results showed that they had a mutation on the PTPN11 gene known as the pathogenic mutation of Noonan syndrome. Facial recognition technology can help in the diagnosis of Noonan syndrome and other genetic syndromes, especially in patients with mild phenotypes.

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF

A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm (유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구)

  • 박종권;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF

Performance Improvement of Genetic Programming Based on Reinforcement Learning (강화학습에 의한 유전자 프로그래밍의 성능 개선)

  • 전효병;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 1998
  • This paper proposes a reinforcement genetic programming based on the reinforcement learning method for the performance improvement of genetic programming. Genetic programming which has tree structure program has much flexibility of problem expression because it has no limitation in the size of chromosome compared to the other evolutionary algorithms. But worse results on the point of convergence associated with mutation and crossover operations are often due to this characteristic. Therefore the sizes of population and maximum generation are typically larger than those of the other evolutionary algorithms. This paper proposes a new method that executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. The validity of the proposed method is evaluated by appling it to the artificial ant problem.

  • PDF