• Title/Summary/Keyword: Genetic evaluation

Search Result 893, Processing Time 0.03 seconds

A Case of Stickler Syndrome Type I Caused by a Novel Variant of COL2A1 Gene (COL2A1 유전자의 새로운 돌연변이에 의한 제 1형 Stickler 증후군으로 진단된 1례)

  • Lee, Jin;Jung, Chang-Woo;Kim, Gu-Hwan;Lee, Beom-Hee;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.8 no.2
    • /
    • pp.125-129
    • /
    • 2011
  • Stickler syndrome is a very rare connective tissue disorder. The authors of the present study describe an 11-month-old girl with high myopia, retinal abnormalities, flat nose, cleft palate, retrognathia, micrognathia, short stature and arthrogryposis. Radiological evaluation also showed irregularity of the epiphysis of the femur and tibia and spondyloepiphyseal dysplasia. Genetic analysis using a peripheral blood sample revealed a novel variant c.787G>A (p.Gly246Asp) mutation of the COL2A1 gene. This is the first Korean case with Stickler syndrome confirmed by genetic testing.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Inclusion of bioclimatic variables in genetic evaluations of dairy cattle

  • Negri, Renata;Aguilar, Ignacio;Feltes, Giovani Luis;Machado, Juliana Dementshuk;Neto, Jose Braccini;Costa-Maia, Fabiana Martins;Cobuci, Jaime Araujo
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.163-171
    • /
    • 2021
  • Objective: Considering the importance of dairy farming and the negative effects of heat stress, more tolerant genotypes need to be identified. The objective of this study was to investigate the effect of heat stress via temperature-humidity index (THI) and diurnal temperature variation (DTV) in the genetic evaluations for daily milk yield of Holstein dairy cattle, using random regression models. Methods: The data comprised 94,549 test-day records of 11,294 first parity Holstein cows from Brazil, collected from 1997 to 2013, and bioclimatic data (THI and DTV) from 18 weather stations. Least square linear regression models were used to determine the THI and DTV thresholds for milk yield losses caused by heat stress. In addition to the standard model (SM, without bioclimatic variables), THI and DTV were combined in various ways and tested for different days, totaling 41 models. Results: The THI and DTV thresholds for milk yield losses was THI = 74 (-0.106 kg/d/THI) and DTV = 13 (-0.045 kg/d/DTV). The model that included THI and DTV as fixed effects, considering the two-day average, presented better fit (-2logL, Akaike information criterion, and Bayesian information criterion). The estimated breeding values (EBVs) and the reliabilities of the EBVs improved when using this model. Conclusion: Sires are re-ranking when heat stress indicators are included in the model. Genetic evaluation using the mean of two days of THI and DTV as fixed effect, improved EBVs and EBVs reliability.

Evaluation of recent changes in genetic variability in Thoroughbred horses based on microsatellite markers parentage panel in Korea

  • Park, Chul Song;Lee, Sun Young;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.527-532
    • /
    • 2022
  • Objective: In this study, we aimed to investigate the recent changes such as allele frequencies and total probability of exclusion (PE) in Thoroughbred horses in Korea using short tandem repeat (STR) parentage panels between 2006 and 2016. Methods: The genotype was provided for 5,988 horse samples with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). Results: In our study, the observed number of alleles per locus ranged from 3 (HMS1) to 9 (ASB17) in 2006 and 4 (HMS1) to 9 (ASB2) in 2016, with a mean value of 6.28 and 6.40, respectively. Of the 15 markers, HMS2, HTG4, and CA425 loci had relatively low polymorphism information content (<0.5000) in the Thoroughbred population. Mean levels of genetic variation in 2006 and 2016 were observed heterozygosity (HO) = 0.708, and expected heterozygosity (HE) = 0.685, as well as and HO = 0.699 and HE = 0.682, respectively. The PE was calculated for each group based on the allele frequencies of 14 or 15 STRs. The 2006 survey analyzed that PE was 0.9998, but it increased to 0.9999 in 2016 after the HMS2 marker was added in 2011. The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred population. Conclusion: The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred horses. However, continuous monitoring genetic variability is necessary.

Association between Taql polymorphism of vitamin D receptor gene and vertical growth of the mandible: A cross-sectional study

  • Baris Can Telatar;Gul Yildiz Telatar;Faruk Saydam
    • The korean journal of orthodontics
    • /
    • v.53 no.5
    • /
    • pp.336-342
    • /
    • 2023
  • Objective: To determine whether the gonial angle on digital panoramic radiographs is associated with vitamin D receptor (VDR) Taql polymorphism. Methods: Genomic DNA samples were collected from the buccal mucosa of patients aged 26-43 years. TaqMan assay for single nucleotide polymorphism genotyping was used to detect the genotype of Taql polymorphism. The gonial angle was measured bilaterally on panoramic radiography. The normal gonial angle was fixed as 121.8°, and it represented the cutoff value for the high gonial angle (HGA) and low gonial angle (LGA) groups. Various genetic models were analyzed, namely dominant (homozygous [AA] vs. heterozygous [AG] + polymorphic [GG]), recessive (AA + AG vs. GG), and additive (AA + GG vs. AG), using the chi-squared test. Results: The reliability of the gonial angle measurement was analyzed using a random sample (26%) of the tests, with the intra-examiner correlation showing an intra-class correlation coefficient of 0.99. The frequencies of the AA, AG, and GG genotypes of rs731236 polymorphism were 40.5%, 41.9%, and 17.6% in the HGA group and 21.8%, 51.0%, and 27.2% in the LGA group, respectively (P = 0.042). A statistically significant difference was observed in the allele frequencies between the two groups (P = 0.011). Moreover, a significant correlation was observed in the dominant genetic model. Conclusions: Taql polymorphism in the VDR gene plays a critical role in the vertical growth of the mandible and decreased gonial angle.

A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm

  • Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Evaluation of Genetic Diversity among Persimmon Cultivars (Diospyros kaki Thunb.) Using Microsatellite Markers (초위성 마커를 이용한 감(Diospyros kaki Thunb.)의 유연관계 분석)

  • Hwang, Ji-Hyeon;Park, Yu-Ok;Kim, Sung-Churl;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu;Park, Young-Hoon
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.632-638
    • /
    • 2010
  • The genetic diversity among 48 persimmon (Diospyros kaki Thunb.) accessions, indigenous in Korea and introduced from Japan and China, was evaluated by using simple sequence repeat (SSR) markers. From 20 SSR primer sets, a total of 114 polymorphic markers were detected among 12 pollination-constant non-astringent (PCNA), 13 pollination-variant non-astringent (PVNA), 15 pollination-variant astringent (PVA), and 8 pollination-constant astringent (PCA) cultivars. Analysis of pair-wise genetic similarity coefficient (Nei-Li) and unweighted pair-group method with arithmetic averaging (UPGMA) clustering revealed two main clusters and four subclusters for cluster I. The subclustering pattern was in accordance with the classification of persimmon cultivars based on the nature of astringency loss. Phenetic relationships among the subclusters showed a closer relatedness of the PCNA group with the PVNA group, and the PVA with the PCA group. Genetic similarity co-efficiency was 0.499 on average and the highest (0.954) similarity was observed between 'Cheongdo-Bansi' and 'Haman-Bansi'. The similarity was lowest (0.192) between 'Damopan'and 'Atago'. Identification of each cultivar with the execption of 'Cheongdo-Bansi' and 'Gyeongsan-Bansi' was possible based on the SSR fingerprints, suggesting that these SSR markers are a useful tool for protecting intellectual property on newly developed cultivars.

Evaluation of horticultural traits and genetic relationship in melon germplasm (멜론 유전자원의 원예형질 특성 및 유연관계 분석)

  • Jung, Jaemin;Choi, Sunghwan;Oh, Juyeol;Kim, Nahui;Kim, Daeun;Son, Beunggu;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.401-408
    • /
    • 2015
  • Horticultural traits and genetic relationship were evaluated for 83 melon (Cucumis melo L.) cultivars. Survey of a total of 36 characteristics for seedling, leaf, stem, flower, fruit, and seed and subsequent multiple analysis of variance (MANOVA) were conducted. Principal component analysis (PCA) showed that 8 principle components including fruit weight, fruit length, fruit diameter, cotyledon length, seed diameter, and seed length accounted for 76.3% of the total variance. Cluster analysis of the 83 melon cultivars using average linkage method resulted in 5 clusters at coefficient of 0.7. Cluster I consisted of cultivars with high values for fruit-related traits, Cluster II for soluble solid content, and Cluster V for high ripening rate. Genotyping of the 83 cultivars was conducted using 15 expressed-sequence tagged-simple sequence repeat (EST-SSR) from the Cucurbit Genomics Initiative (ICuGI) database. Analysis of genetic relatedness by UPGMA resulted in 6 clusters. Mantel test indicated that correlation between morphological and genetic distance was very low (r = -0.11).