• 제목/요약/키워드: Genetic enhancement

검색결과 143건 처리시간 0.028초

Analysis of the chloroplast genome and SNP detection in a salt tolerant breeding line in Korean ginseng

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Hong, Chi Eun;Kim, Jang-Uk;Lee, Jung-Woo;Kim, Dong-Hwi;Hyun, Dong-Yun;Ryu, Hojin;Kim, Young-Chang
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.417-421
    • /
    • 2016
  • The complete chloroplast genome sequence of Panax ginseng breeding line 'G07006', showing higher salt tolerance, was confirmed by de novo assembly using whole genome next-generation sequences. The complete chloroplast (CP) genome size is 156,356 bp, including two inverted repeats (IRs) of 52,060 bp, separated by the large single-copy (LSC 86,174 bp) and the small single-copy (SSC 18,122 bp) regions. One hundred fourteen genes were annotated, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 18 sites were duplicated in the inverted repeat regions. By comparative analyses of the previously identified CP genome sequences of nine cultivars of P. ginseng and that of G07006, five useful SNPs were defined in this study. Since three of the five SNPs were cultivar-specific to Chunpoong and Sunhyang, they could be easily used for distinguishing from other ginseng accessions. However, on arranging SNPs according to their gene location, the G07006 genotype was 'GTGGA', which was distinct from other accessions. This complete chloroplast DNA sequence could be conducive to discrimination of the line G07006 (salt-tolerant) and further enhancement of the genetic improvement program for this important medicinal plant.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권2호
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2

  • Lee, Hansol;Shin, Won-Sub;Kim, Young Uk;Jeon, Seungjib;Kim, Minsik;Kang, Nam Kyu;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1597-1606
    • /
    • 2020
  • Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRT-PCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.

바이러스 감염에 대한 면역반응 (Immune Responses to Viral Infection)

  • 황응수;박정규;차창용
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

A Study on Gamma ray effects on Stress Response and Cellular Toxicity using Bacterial Cells

  • 민지호;이현주;이창우;구만복
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.187-190
    • /
    • 2000
  • 본 연구는 5가지의 발광성 미생물을 이용하여 유해 방사선으로 알려져 있는 ${\gamma}-rays$가 여러가지 cellular stresses 중, 특히 유전자 손상과 생물막 손상을 유발하였는데, 이들의 손상 정도가 총 방사선량과 상관관계가 있음을 발생하는 bioluminescence 로써 확인하였다. 뿐만 아니라, 선량률의 변화를 통하여 방사선으로 인한 유전자 손상 및 일반적인 독성 효과가 큰 영향을 받는 것을 확인하였는데, 선량률 증가에 따라 이들 손상정도가 증가하는 것으로 보아 선량률이 genetic 및 radioprotecion에 심각한 영향을 미치는 것을 확인하였다.

  • PDF

Robustness of Selection Indices in Murrah Buffaloes

  • Gandhi, R.S.;Joshi, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권2호
    • /
    • pp.159-163
    • /
    • 2004
  • Data pertaining to first lactation records of 316 Murrah buffaloes, progeny of 47 sires, maintained at NDRI Farm for a period of 18 years were analysed to construct selection indices and to examine their robustness by changing the relative economic values of different economic traits. A total of 120 selection indices were constructed for three sets of relative economic values ( 40 for each set) considering different combinations of seven first lactation traits viz. age at first calving (AFC), first lactation 305 day or less milk yield (FLMY), first lactation length (FLL), first calving interval (FCI), milk yield per day of first lactation length (MY/FLL), milk yield per day of first calving interval (MY/FCI) and milk yield per day age at second calving (MY/ASC). The three sets of relative economic values were based on economic values of different traits, 1% standard deviation of different traits and regression of different traits on FLMY. The 'optimum' indices for the first two sets had five traits each namely AFC, FLMY, FLL, FCI and MY/ASC giving improvement in aggregate genotype of Rupees 269.11 and Rs. 174.88, respectively. The accuracy of selection from both indices was 70.79 and 69.39%, respectively. The 'best' selection index from the third set of data again had five traits (AFC, FLMY, FLL, FCI and MY/FLL) giving genetic gain of Rs. 124.16 and accuracy of selection of 71.81%. The critcal levels or break-even points for FLMY for varying levels of AFC and FCI estimated from the "optimum index" suggested the need of enhancement of present production level of the herd or reduction of AFC or FCI. It was concluded that economic values of various first lactation traits were the most appropriate to construct selection indices as compared to other criteria of assigning relative economic weights in Murrah buffaloes.

Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L.

  • Nafis, Tazyeen;Akmal, Mohd.;Ram, Mauji;Alam, Pravej;Ahlawat, Seema;Mohd, Anis;Abdin, Malik Zainul
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.53-60
    • /
    • 2011
  • Artemisinin is effective against both chloroquine-resistant and -sensitive strains of Plasmodium species. However, the low yield of artemisinin from cultivated and wild plants is a serious limitation to the commercialization of this drug. Optimization of artemisinin yield either in vivo or in vitro is therefore highly desirable. To this end, we have overexpressed the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) gene (hmgr) from Catharanthus roseus L. in Artemisia annua L. and analyzed its influence on artemisinin content. PCR and Southern blot analyses revealed that the transgenic plants showed stable integration of the foreign hmgr gene. The reverse transcriptase-PCR results suggested that the hmgr was expressed at the transcriptional level in transgenic lines of Artemisia annua L., while the high-performance liquid chromatography analysis showed that artemisinin content was significantly increased in a number of the transgenic lines. Artemisinin content in one of the A. annua transgenic lines was 38.9% higher than that in non-transgenic plants, and HMGR enzyme activity in transgenic A. annua L. was also higher than that in the non-transgenic lines.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Codelivery of IL-7 Augments Multigenic HCV DNA Vaccine-induced Antibody as well as Broad T Cell Responses in Cynomolgus Monkeys

  • Park, Su-Hyung;Song, Mi-Young;Nam, Hyo-Jung;Im, Se-Jin;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.198-205
    • /
    • 2010
  • Background: A crucial limitation of DNA vaccines is its weak immunogenicity, especially in terms of eliciting antibody responses in non-human primates or humans; therefore, it is essential to enhance immune responses to vaccination for the development of successful DNA vaccines for humans. Methods: Here, we approached this issue by evaluating interleukin-7 (IL-7) as a genetic adjuvant in cynomolgus monkeys immunized with multigenic HCV DNA vaccine. Results: Codelivery of human IL-7 (hIL-7)-encoding DNA appeared to increase DNA vaccine-induced antibody responses specific for HCV E2 protein, which plays a critical role in protecting from HCV infection. HCV-specific T cell responses were also significantly enhanced by codelivery of hIL-7 DNA. Interestingly, the augmentation of T cell responses by codelivery of hIL-7 DNA was shown to be due to the enhancement of both the breadth and magnitude of immune responses against dominant and subdominant epitopes. Conclusion: Taken together, these findings suggest that the hIL-7-expressing plasmid serves as a promising vaccine adjuvant capable of eliciting enhanced vaccine-induced antibody and broad T cell responses.

기후변화에 대응한 농업생명공학의 기회와 도전 (Agricultural biotechnology: Opportunities and challenges associated with climate change)

  • 장안철;최지영;이신우;김동헌;배신철
    • Journal of Plant Biotechnology
    • /
    • 제38권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.