• Title/Summary/Keyword: Genetic diversity and structure

Search Result 377, Processing Time 0.026 seconds

Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers

  • Suh, Sangwon;Sharma, Aditi;Lee, Seunghwan;Cho, Chang-Yeon;Kim, Jae-Hwan;Choi, Seong-Bok;Kim, Hyun;Seong, Hwan-Hoo;Yeon, Seong-Hum;Kim, Dong-Hun;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1399-1405
    • /
    • 2014
  • The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency ($F_{IT}$) in native chicken was $0.234{\pm}0.025$. Over 30.7% of $F_{IT}$ was contributed by within-population deficiency ($F_{IS}$). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds.

Genetic Diversity and Population Structure of Potentilla freyniana in Korea (한국내 세잎양지꽃의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.877-881
    • /
    • 2007
  • The genetic diversity and population structure of Potentilla freyniana in Korea were determined using genetic variations at 19 allozyme loci. Thirteen of the 19 loci (68.4%) showed detectable polymorphism. Genetic diversity at the population level was high ($H_{EP}$ = 0.270). Total genetic diversity values ($H_T$) varied between 0.190 and 0.584, giving an average overall polymorphic loci of 0.371. The interlocus variation of genetic diversity within populations ($H_S$) was high (0.354). On a per locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.008 for Fe-2 to 0.310 for Gpi with a mean of 0.065, indicating that about 6.5% of the total allozyme variation was among populations. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation in P. freyniana. The estimate of gene flow based on $G_{ST}$, was high among Korean populations of P. freyniana (Nm =3.57). Although P. freyniana usually propagated by asexually-produced ramets, I could not rule out the possibility that sexual reproduction occurred at a low rate because each ramet may produce terminal flowers.

Application of genomic big data to analyze the genetic diversity and population structure of Korean domestic chickens

  • Eunjin Cho;Minjun Kim;Jae-Hwan Kim;Hee-Jong Roh;Seung Chang Kim;Dae-Hyeok Jin;Dae Cheol Kim;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.912-921
    • /
    • 2023
  • Genetic diversity analysis is crucial for maintaining and managing genetic resources. Several studies have examined the genetic diversity of Korean domestic chicken (KDC) populations using microsatellite markers, but it is difficult to capture the characteristics of the whole genome in this manner. Hence, this study analyzed the genetic diversity of several KDC populations using high-density single nucleotide polymorphism (SNP) genotype data. We examined 935 birds from 21 KDC populations, including indigenous and adapted Korean native chicken (KNC), Hyunin and Jeju KDC, and Hanhyup commercial KDC populations. A total of 212,420 SNPs of 21 KDC populations were used for calculating genetic distances and fixation index, and for ADMIXTURE analysis. As a result of the analysis, the indigenous KNC groups were genetically closer and more fixed than the other groups. Furthermore, Hyunin and Jeju KDC were similar to the indigenous KNC. In comparison, adapted KNC and Hanhyup KDC populations derived from the same original species were genetically close to each other, but had different genetic structures from the others. In conclusion, this study suggests that continuous evaluation and management are required to prevent a loss of genetic diversity in each group. Basic genetic information is provided that can be used to improve breeds quickly by utilizing the various characteristics of native chickens.

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

Genetic Diversity and Population Structure of Kaloula borealis (Anura, Microhylidae) in Korea

  • Yang, Suh-Yung;Kim, Jong-Bum;Min, Mi-Sook;Suh, Jae-Hwa;Kang, Young-Jin
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2000
  • To assess the genetic diversity and population structure of Korean K. borealis, allozyme analysis was performed. The average genetic variability of Korean K. borealis populations was %P=13.2, Ho=0.048, and He=0.045. This value was the lowest in comparison with other Korean amphibian species studied. Also, the value was much lower than that of a reference population from Chinese K. borealis (%P=50, Ho=0.125, He=0.172). Wright's F-statistics showed that Korean K. borealis has distinctly low level of gene flow among regional populations (F$_{ST}$=0.339, Nm=0.487) in comparison with other Korean amphibian species studied. However, the average level of genetic divergence among Korean K. borealis populations was moderate (Nei's D=0.020). Therefore, it appeared that low levels of genetic diversity (He=0.045) and gene flow (Nm=0.487) among regional populations ave probably due to the results of decreasing population size and patchy distribution of this species in Korea.

  • PDF

Population Genetic Structure and Marker - Trait Associations in a Collection of Traditional Rice (Oryza sativa L.) from Northern Vietnam

  • Ngoc Ha Luong;Le-Hung Linh;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.04a
    • /
    • pp.110-110
    • /
    • 2022
  • Rice is the world's most important food crop and a major source of nutrition for about two thirds of populations. Northern Vietnam is one of the most important centers of genetic diversity for cultivated rice. In this study, we determined the genetic diversity and population structure of 79 rice landraces collected from northern Vietnam and 19 rice accessions collected from different countries. In total, 98 rice accessions could be differentiated into japonica and indica with moderate genetic diversity and a polymorphism information content of 0.382. We also detected subspecies-specific markers to classify rice (Oryza sativa L.) into indica and japonica. Additionally, we detected five marker-trait associations and rare alleles that can be applied in future breeding programs. Most interestingly, analysis of molecular variance (AMOVA) found genetic differentiation was related to geographical regions with an overall PhiPT (analog of fixation index FST) value of 0.130. More emphasis was given to provide signatures and infer explanations about the role of geographical isolation and environmental heterogeneity in genetic differentiation among regions in landraces from northern Vietnam. Our results suggest that rice landraces in northern Vietnam have a dynamic genetic system that can create different levels of genetic differentiation among regions, but also maintain a balanced genetic diversity between regions.

  • PDF

Genetic Diversity and Population Structure of a Korean Rice Germplasm Based on DNA Profiles

  • Lee, Kyung Jun;Lee, Jung-Ro;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An;Chung, Jong-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Information on the patterns of genetic diversity and population structure is essential for the rational use and efficient management of germplasms; accurate information aids in monitoring germplasms, and can also be used to predict potential genetic gains. In this study, we assessed genetic diversity, focusing on Korean rice accessions for theand their sustainable conserved diversity. Using DNA profiling with 12 simple sequence repeat (SSR) markers, we detected a total of 333 alleles among 2,016 accessions. The number of alleles ranged from 21 to 53, with an average of 27.8. Average polymorphism information content was 0.797, with the lowest being 0.667 and the highest 0.940. CA cluster analysis and the model-based population structure revealed two main groups that could be subdivided into five subgroups. Analysis of the molecular variance study based on the SSR profile data showed 5% variance among the profiles, whereas we recorded 93% variance among individuals and 2% variance within individuals. Specifically, the utilized diversity for of the breeding program is restricted in that cultivars were located in limited clades. These results revealed that preserving the diversity of Korean landraces could be useful sources for breeding new rice cultivars, and cwould be the basis for the sustainable conservation and utilization of a Korean rice germplasm.

EST-SSR Based Genetic Diversity and Population Structure among Korean Landraces of Foxtail Millet (Setaria italica L.)

  • Ali, Asjad;Choi, Yu-Mi;Do, Yoon-Hyun;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Cho, Yang-Hee;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.322-330
    • /
    • 2016
  • Understanding the genetic variation among landrace collections is important for crop improvement and utilization of valuable genetic resources. The present study was carried out to analyse the genetic diversity and associated population structure of 621 foxtail millet accessions of Korean landraces using 22 EST-SSR markers. A total of 121 alleles were detected from all accessions with an average of 5.5 alleles per microsatellite locus. The average values of gene diversity, polymorphism information content, and expected heterozygosity were 0.518, 0.594, and 0.034, respectively. Following the unweighted neighbor-joining method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 3 clusters, and population structure analysis also separated into 3 populations. Principal coordinate analysis (PCoA) explained a variation of 13.88% and 10.99% by first and second coordinates, respectively. However, in PCoA analysis, clear population-level clusters could not be found. This pattern of distribution might be the result of gene flow via germplasm exchanges in nearby regions. The results indicate that these Korean landraces of foxtail millet exhibit a moderate level of diversity. This study demonstrated that molecular marker strategies could contribute to a better understanding of the genetic structure in foxtail millet germplasm, and provides potentially useful information for developing conservation and breeding strategies.

Genetic diversity and population structure of Atractylodes japonica $K_{OIDZ}.$ in Korea (한국내 삽주의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu;Sung, Jung-Sook;Park, Chun-Geon;Park, Hee-Woon;Seong, Nak-Sul;Moon, Sung-Gi;Huh, Hong-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • The study of genetic diversity was carried out in Atractylodes japonica $K_{OIDZ}$. Although this species has been regarded as medically important one, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of eight Korean populations of this species. Of the 15 genetic loci surveyed, nine (60.0%) was polymorphic in at least one population. Genetic diversity was high at the species level $(H_{es}=0.144)$, whereas, that of the population level was relatively low $(H_{ep}=0.128)$. Nearly 87% of the total genetic diversity in A. japonica was apportioned within populations. The sexual reproduction, high fecundity, and perennials are proposed as possible factors contributing to high genetic diversity. The indirect estimated of gene flow based on Gst was 1.69.

Phylogeography of the economic seaweeds Chondrus (Gigartinales, Rhodophyta) in the northwest Pacific based on rbcL and COI-5P genes

  • Yang, Mi Yeon;Kim, Myung Sook
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.135-147
    • /
    • 2022
  • The red algal genus Chondrus have long been used as raw materials for carrageenan and dietary fiber in health foods. Despite the importance of genetic information in safeguarding natural seaweed resources, knowledge of the population genetics of Chondrus in the northwest Pacific is limited. In this study, genetic diversity and phylogeographic structure of 45 populations (777 specimens) of Chondrus from Korea, China, and Japan were evaluated based on mitochondrial COI-5P gene sequences, and phylogenetic relationships were confirmed based on plastid rbcL gene sequences. Molecular analyses assigned the specimens in this study to three Chondrus species: C. nipponicus, C. ocellatus, and C. giganteus; phenotype-based species classification was impossible owing to their high morphological plasticity. We found moderate intraspecific genetic diversity and a shallow phylogeographic structure in both for C. nipponicus and C. ocellatus, and low intraspecific genetic diversity in C. giganteus. Each of the three species exhibited high-level intraspecific gene flow among regions based on the most common haplotypes (CN1 for C. nipponicus, CO1 for C. ocellatus, and CG1 for C. giganteus). Our comprehensive genetic information provides insights into the phylogeographic patterns and intraspecific diversity of the economically important Chondrus species. It also highlights the need to conserve existing natural Chondrus resources through continuous monitoring of genetic diversity and phylogeographic pattern.