• Title/Summary/Keyword: Genetic distance

Search Result 724, Processing Time 0.028 seconds

Genetic Distance Methods for the Identification of Cervus Species

  • Seo Jung-Chul;Kim Min-Jung;Lee Chan;Lee Jeong-Soo;Choi Kang-Duk;Leem Kang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.225-231
    • /
    • 2006
  • Objectives : This study was performed to determine if unknown species of antler samples could be identified by genetic distance methods. Methods : The DNAs of 4 antler samples were extracted, amplified by PCR, and sequenced. The DNAs of antlers were identified by genetic distance. Genetic distance method was made using MEGA software (Molecular Evolutionary Genetics Analysis, 3.1). Results : By genetic distance methods, all 4 antler samples were closest to Cervus elaphus nelsoni among Cervus species. Conclusion : These results suggest that genetic distance methods might be used as a tool for the identification of Cervus species.

  • PDF

Genetic Distances in Two Gracilaria Species (Gracilariaceae, Rhodophyta) Identified by PCR Technique

  • Kim, Young Sik;Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.393-402
    • /
    • 2018
  • Genomic DNA was isolated from the Gracilaria vermiculophylla (GRV) and G. chorda (GRC) from Jangheung located in the southern sea of the Korean Peninsula, respectively and we performed clustering analyses, DNA polymorphisms and the genetic differences. The seven selected primers OPC-01, OPA-04, OPA-05, OPD-07, OPD-08, OPB-10, and OPD-16 generated average bandsharing (BS) value, the genetic distance and dendrogram. The size of DNA bands varies from 90 bp to 2,400 bp. The average BS value was $0.859{\pm}0.004$ within GRV and $0.916{\pm}0.006$ within GRC. The average BS value between two Gracilaria species was $0.340{\pm}0.003$, ranged from 0.250 to 0.415. The dendrogram obtained by the seven primers, indicates two genetic clusters. The genetic distance between two Gracilaria species ranged from 0.059 to 0.513. The individual VERMICULOPHYLLA no. 07 of GRV was genetically closely related to VERMICULOPHYLLA no. 06 of GRV (genetic distance=0.059). Especially, two entities between the individual VERMICULOPHYLLA no. 10 of GRV and CHORDA no. 22 of GRC showed the longest genetic distance (0.513) in comparison with other individuals used. Accordingly, as mentioned above, PCR analysis showed that the GRV was a little more genetically diverse than the GRC species. We convinced that this DNA analysis revealed a significant genetic distance between two Gracilaria species pairs (p<0.01).

Small-scale spatial genetic structure of Asarum sieboldii metapopulation in a valley

  • Jeong, Hyeon Jin;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.97-104
    • /
    • 2021
  • Background: Asarum sieboldii Miq., a species of forest understory vegetation, is an herbaceous perennial belonging to the family Aristolochiaceae. The metapopulation of A. sieboldii is distributed sparsely and has a short seed dispersal distance by ants as their seed distributor. It is known that many flowers of A. sieboldii depend on self-fertilization. Because these characteristics can affect negatively in genetic structure, investigating habitat structure and assessment of genetic structure is needed. A total of 27 individuals in a valley were sampled for measuring genetic diversity, genetic distance, and genetic differentiation by RAPDPCR. Results: The habitat areas of A. sieboldii metapopulation were relatively small (3.78~33.60 m2) and population density was very low (five to seven individuals in 20×20 m quadrat). The habitat of A. sieboldii was a very shady (relative light intensity = 0.9%) and mature forest with a high evenness value (J = 0.81~0.99) and a low dominance value (D = 0.19~0.28). The total genetic diversity of A. sieboldii was quite high (h = 0.338, I = 0.506). A total of 33 band loci were observed in five selected primers, and 31 band loci (94%) were polymorphic. However, genetic differentiation along the valley was highly progressed (Gst = 0.548, Nm = 0.412). The average genetic distance between subpopulations was 0.387. The results of AMOVA showed 52.77% of variance occurs among populations, which is evidence of population structuring. Conclusions: It is expected that a small-scale founder effect had occurred, an individual spread far from the original subpopulation formed a new subpopulation. However, geographical distance between individuals would have been far and genetic flow occurred only within each subpopulation because of the low density of population. This made significant genetic distance between the original and new population by distance. Although genetic diversity of A. sieboldii metapopulation is not as low as concerned, the subpopulation of A. sieboldii can disappear by stochastic events due to small subpopulation size and low density of population. To prevent genetic isolation and to enhance the stable population size, conservative efforts such as increasing the size of each subpopulation or the connection between subpopulations are needed.

Genetic Distances between Two Cultured Penaeid Shrimp (Penaeus chinensis) Populations Determined by PCR Analysis

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.193-198
    • /
    • 2019
  • Genomic DNA samples were obtained from cultured penaeid shrimp (Penaeus chinensis) individuals such as fresh shrimp population (FSP) and deceased shrimp population (DSP) from Shinan regions in the Korean peninsula. In this study, 233 loci were identified in the FSP shrimp population and 162 in the DSP shrimp population: 33 specific loci (14.2%) in the FSP shrimp population and 42 (25.9%) in the DSP population. A total of 66 (an average of 9.4 per primer) were observed in DSP shrimp population, whereas 55 unique loci to each population (an average of 7.9 per primer) in the FSP shrimp population. The Hierarchical dendrogram extended by the seven oligonucleotides primers indicates three genetic clusters: cluster 1 (FRESH 01, 02, and DECEASED 12, 13, 15, 16, 17, 19, 20, 22) and cluster 2 (FRESH 03, 04, 05, 06, 07, 08, 09, 10, 11, and DECEASED 14, 18, 21). Among the twenty-two shrimp, the shortest genetic distance that exposed significant molecular differences was between individuals 20 and 16 from the DSP shrimp population (genetic distance=0.071), while the longest genetic distance among the twenty-two individuals that established significant molecular differences was between individuals FRESH no. 02 and FRESH no. 04 (genetic distance=0.477). In due course, PCR analysis has revealed the significant genetic distance among two penaeid shrimp populations.

Effects of habitat differences on the genetic diversity of Persicaria thunbergii

  • Nam, Bo Eun;Nam, Jong Min;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • To understand the effects of habitat characteristics on the genetic diversity of Persicaria thunbergii, three sites of different environmental conditions in a water system were surveyed. Site A was the closest to the source of the water system, and there was a dam between sites A and B. Site C is located on the lowest downstream in the water system. Vegetation survey of four quadrats at each site was performed, and soil samples were collected for physicochemical analysis. Random amplification of polymorphic DNA (RAPD) analysis of ten P. thunbergii individuals at each site was conducted to calculate population genetic diversity and genetic distance among populations. Soil was sterile sand at site A, whereas loamy soil at sites B and C. A pure stand of P. thunbergii appeared at site A, while other species occurred together (such as Humulus japonicus and Phragmites australis) at sites B (Shannon-Wiener index; $H_B=0.309$) and C ($H_C=0.299$). Similar to the species diversity, genetic diversity (Nei's gene diversity; h) within population of site A ($h_A=0.2381$) was relatively lower than sites B ($h_B=0.2761$) and C ($h_C=0.2618$). However, site C was separated from sites A and B in genetic distance rather than the geographical distance (Nei's genetic distance; A~B, 0.0338; B~C, 0.0685; A~C, 0.0833).

Genetic Structure and Differentiation of Three Indian Goat Breeds

  • Dixit, S.P.;Verma, N.K.;Aggarwal, R.A.K.;Kumar, Sandeep;Chander, Ramesh;Vyas, M.K.;Singh, K.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1234-1240
    • /
    • 2009
  • Gene flow, genetic structure and differentiation of Kutchi, Mehsana and Sirohi breeds of goat from North-Western India were evaluated based on 25 microsatellite markers so as to support breed conservation and improvement decisions. The microsatellite genotyping was carried out using an automated DNA sequencer. The gene diversity across the studied loci for the Kutchi breed varied from 0.57 (ILST 065) to 0.93 (OarFCB 304, OMHC 1, ILSTS 058) with an overall mean of 0.79${\pm}$0.02. The corresponding values for Mehsana and Sirohi breeds were 0.16 (ILST 008) to 0.93 (OMHC 1, ILSTS 058) with an average of 0.76${\pm}$0.04, and 0.50 (ILSTS 029) to 0.94 (ILSTS 058) with an average of 0.78${\pm}$0.02, respectively. The Mehsana breed had lowest gene diversity among the 3 breeds studied. All the populations showed an overall significant heterozygote deficit ($F_{is}$). The Fis values were 0.26, 0.14 and 0.36 for Kutchi, Mehsana and Sirohi goat breeds, respectively. Kutchi and Mehsana were more differentiated (16%) followed by Mehsana and Sirohi (13%).The measures of standard genetic distance between pairs of breeds indicated that the lowest genetic distance was between Kutchi and Sirohi breeds (0.73) and the largest genetic distance was between Mehsana and Kutchi (1.0) followed by Sirohi and Mehsana (0.75) breeds. Mehsana and Kutchi are distinct breeds and this was revealed by the estimated genetic distance between them. All measures of genetic variation revealed substantial genetic variation in each of the populations studied, thereby showing good scope for their further improvement.

Geographic Variations and Genetic Distance of Three Geographic Cyclina Clam (Cyclina sinensis Gmelin) Populations from the Yellow Sea

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.315-320
    • /
    • 2012
  • The gDNA isolated from Cyclina sinensis from Gochang (GOCHANG), Incheon (INCHEON) and a Chinese site (CHINESE), were amplified by PCR. Here, the seven oligonucleotide decamer primers (BION-66, BION-68, BION-72, BION-73, BION-74, BION-76, and BION-80) were used to generate the unique shared loci to each population and shared loci by the three cyclina clam populations. As regards multiple comparisons of average bandsharing value results, cyclina clam population from Chinese (0.763) exhibited higher bandsharing values than did clam from Incheon (0.681). In this study, the dendrogram obtained by the seven decamer primers indicates three genetic clusters: cluster 1 (GOCHANG 01~GOCHANG 07), cluster 2 (INCHEON 08~INCHEON 14), cluster 3 (CHINESE 15~CHINESE 21). The shortest genetic distance that displayed significant molecular differences was between individuals 15 and 17 from the Chinese cyclina clam (0.049), while the longest genetic distance among the twenty-one cyclina clams that displayed significant molecular differences was between individuals GOCHANG no. 03 and INCHEON no. 12 (0.575). Individuals of Incheon cyclina clam population was somewhat closely related to that of Chinese cyclina clam population. In conclusion, our PCR analysis revealed a significant genetic distance among the three cyclina clam populations.

Genetic Distances of Crucian Carp Populations analyzed by PCR Approach

  • Jeon, Jun-Hyub;Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • Genomic DNAs isolated from crucian carp of four rivers, belonging to the family Cyprinidae was amplified by seven oligonucleotides primers. In the present study, we employed hierarchical clustering method in order to reveal genetic distances and variations. Crucian carp was acquired from Hangang river (CAH), Geumgang river (CAG), Nakdonggang river (CAN) and Yeongsangang river (CAY). The primer BION-12 generated the most loci (a total of 50) with an average of 10 in the CAY population. The primer BION-10 generated the least loci (a total of 19), with an average of 3.8 in the CAG population, in comparison to the other primers used. Seven oligonucleotides primers made 16.7 average no. per primer of specific loci in the CAH population, 7.4 in the CAG population, 8.6 in the CAN population and 0.9 in the CAY population, respectively. The specific loci generated by oligonucleotides primers revealed inter-individual-specific characteristics, thus disclosing DNA polymorphisms. The dendrogram obtained by the seven oligonucleotides primers indicates four genetic clusters. The genetic distance that displayed significant molecular differences was between individuals no.06 and no.08 from the CAG population (genetic distance = 0.036), while the genetic distance among the five individuals that displayed significant molecular differences was between individuals no.08 and no.09 from the CAG population (genetic distance = 0.088). With regard to average bandsharing value (BS) results, individuals from CAY population ($0.985{\pm}0.009$) exhibited higher bandsharing values than did individuals from CAH population ($0.779{\pm}0.049$) (P<0.05). Relatively, individuals of CAY population were fairly closely related to that of CAN location (genetic distance between two populations<0.016).

Geographic Variations of Three Fulvia mutica Populations

  • Kang, Seo-Kyeong;Yoon, Jong-Man
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.163-169
    • /
    • 2013
  • In the present study, the seven primers BION-33, BION-34, BION-37, BION-41, BION-44, BION-45 and BION-42 generated the total number of loci, average number of loci per lane and specific loci in Hongseong, Yeosu and Goheung population of F. mutica, respectively. 7 primers generated 19 specific loci in the Hongseong population, 29.3 in the Yeosu population and 23.1 in the Goheung population, respectively. Especially, the decamer primer BION-37 generated 7 unique loci to each population, which were identifying each population, approximately 700 bp in Hongseong population. In this study, the dendrogram obtained by the seven primers indicates three genetic clusters: cluster 1 (HONGSEONG 01-HONGSEONG 07), cluster 2 (YEOSU 08-YEOSU 14) and cluster 3 (GOHEUNG 15-GOHEUNG 21). Among the twenty one cockles, the shortest genetic distance that displayed significant molecular differences was between individuals 17 and 19 from the Goheung population (genetic distance = 0.051), while the longest genetic distance among the twenty-one cockle individuals that displayed significant molecular differences was between individuals HONGSEONG no. 03 and YEOSU no. 12 (genetic distance = 0.616). Relatively, individuals of YEOSU population were fairly closely related to that of GOHEUNG population. Ultimately, PCR fragments revealed of in this study may be useful as a DNA marker the three geographic populations to distinguish.

Assessment of genetic diversity and distance of three Cicuta virosa populations in South Korea

  • Nam, Bo Eun;Kim, Jae Geun;Shin, Cha Jeong
    • Journal of Ecology and Environment
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • Cicuta virosa L. (Apiaceae) is a perennial emergent plant designated as an endangered species in South Korea. According to the former records, only four natural habitats remain in South Korea. A former study suggested that three of four populations (Pyeongchang: PC, Hoengseong: HS, Gunsan: GS) would be classified as different ecotypes based on their different morphological characteristics and life cycle under different environmental conditions. To evaluate this suggestion, we estimated genetic diversity in each population and distance among three populations by random amplification of polymorphic DNA. Seven random primers generated a total of 61 different banding positions, 36 (59%) of them were polymorphic. Nei's gene diversity and the Shannon diversity index increased in the order of PC < HS < GS, which is the same order of population size. In the two-dimensional (2D) plot of first two principal components in principal component analysis with the presence of 61 loci, individuals could be grouped as three populations easily (proportion of variance = 0.6125). Nei's genetic distance for the three populations showed the same tendency with the geographical distance within three populations. And it is also similar to the result of discriminant analysis with the morphological or life-cycle factors from the previous study. From the results, we concluded that three different populations of C. virosa should be classified as ecotypes based on not only morphology and phenology but genetic differences in terms of diversity and distance as well.