• Title/Summary/Keyword: Genetic cluster

검색결과 565건 처리시간 0.027초

유전 알고리즘을 이용한 이진 결정 트리의 설계와 영문자 인식에의 응용 (A design of binary decision tree using genetic algorithms and its application to the alphabetic charcter)

  • 정순원;김경민;박귀태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.218-223
    • /
    • 1995
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature or feature subset among all the available features is selected based on fitness function in genetic algorithm which is inversely proportional to classification error, balance between cluster, number of feature used. The proposed design scheme is applied to the handwtitten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Morphological and Molecular Characterization of Thamnocalamus falconeri Hook f. ex. Munro

  • Tiwari, Chandrakant;Bakshi, Meena;Nautiyal, Subhash
    • Journal of Forest and Environmental Science
    • /
    • 제31권3호
    • /
    • pp.214-224
    • /
    • 2015
  • The economy of India and so also of many Asian countries depends on bamboos and their uses are not only in domestic items but also in rural housing and raw materials to several industries and germplasm characterization is an important link between the conservation and utilization of plant genetic resources. Classical taxonomic studies of the bamboos are based on floral morphology and growth habit, which can cause problems in identification due to erratic flowering coupled with different biotic agencies and environmental factors. Identification and genetic relationships among accessions of Thamnocalamus falconeri were investigated using morphology and random amplified polymorphic DNAs (RAPD) technique. Analysis started by using 51 vegetative characters and forty two 10-mer primers that allowed us to distinguish different genotypes hailing from different eco- zones of Garhwal Himalayas (India). The selected primers (12) were used for identification and for establishing a profiling system to estimate genetic diversity. A total of 79.33% polymorphism was estimated by using 12 selected primers. The genetic similar analysis was conducted based on binary digits i.e. presence (1) or absence (0) of bands, which revealed a wide range of variability among the species whereas genetic relatedness was quite high based on vegetative characters. Cluster analysis clearly showed two major clusters for both of the markers viz. morphology and RAPD belonging to 10 accessions of T. falconeri. Two major clusters were further divided into minor clusters. Cluster based on RAPD marker showed grouping of accessions of closed locality whereas analogy was reported for vegetative traits. The RAPD technique has the potential for use in species identification and genetic relationships studies of bamboo for breeding program.

Genetic Diversity among Korean Bermudagrass (Cynodon spp.) Ecotypes Characterized by Morphological, Cytological and Molecular Approaches

  • Kang, Si-Yong;Lee, Geung-Joo;Lim, Ki Byung;Lee, Hye Jung;Park, In Sook;Chung, Sung Jin;Kim, Jin-Baek;Kim, Dong Sub;Rhee, Hye Kyung
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.163-171
    • /
    • 2008
  • The genus Cynodon comprises ten species. The objective of this study was to evaluate the genetic diversity of Korean bermudagrasses at the morphological, cytological and molecular levels. Morphological parameters, the nuclear DNA content and ploidy levels were observed in 43 bermudagrass ecotypes. AFLP markers were evaluated to define the genetic diversity, and chromosome counts were made to confirm the inferred cytotypes. Nuclear DNA contents were in the ranges 1.42-1.56, 1.94-2.19, 2.54, and 2.77-2.85 pg/2C for the triploid, tetraploid, pentaploid, and hexaploid accessions, respectively. The inferred cytotypes were triploid (2n = 3x = 27), tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45), and hexaploid (2n = 6x = 54), but the majority of the collections were tetraploid (81%). Mitotic chromosome counts verified the corresponding ploidy levels. The fast growing fine-textured ecotypes had lower ploidy levels, while the pentaploids and hexaploids were coarse types. The genetic similarity ranged from 0.42 to 0.94 with an average of 0.64. UPGMA cluster analysis and principle coordinate analysis separated the ecotypes into 6 distinct groups. The genetic similarity suggests natural hybridization between the different cytotypes, which could be useful resources for future breeding and genetic studies.

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong;Bao, Wenbin;Shu, Jingting;Ji, Congliang;Wang, Minqiang;Eding, Herwin;Muchadeyi, Farai;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.331-339
    • /
    • 2008
  • The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

  • Seo, Joo Hee;Lee, Jun Heon;Kong, Hong Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권10호
    • /
    • pp.1365-1371
    • /
    • 2017
  • Objective: This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC) and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods: In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line) were investigated by performing genotyping using 20 microsatellite markers. Results: The highest genetic distance was observed between RIR and LH (18.9%), whereas the lowest genetic distance was observed between HH and NC (2.7%). In the principal coordinates analysis (PCoA) illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH), although it was highest in LH (0.987) and lowest in CS (0.578). For the cluster 1 it was high in HH (0.582) and in CS (0.368), while for the cluster 4 it was relatively higher in HH (0.392) than other breeds. Conclusion: Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands.

Analysis of Genetic Diversity of Korean Accessions of the Genus Acorus Using RAPD Markers and NIR Spectroscopy

  • Lee, Ja-Hyun;Kim, In-Seon;Lee, Seong-Gene;Rim, Kwang-Sub;Kim, Sung-Gil;Han, Tae-Ho
    • 원예과학기술지
    • /
    • 제29권3호
    • /
    • pp.232-239
    • /
    • 2011
  • The genus Acorus is known as an indigenous medicinal plant. Genetic diversity of thirteen accessions of A. calamus and eight of A. gramineus, with an accession of Colocasia antiquorum and two of Iris pseudacorus as outgroups, were evaluated using RAPD markers for cluster analysis and principal coordinate analysis, and NIR spectroscopic profiles for principal component analysis.A total of 371 polymorphic bands were obtained by using the selected 12 random primers. The genetic distances were estimated from 0.03 to 0.31 within A. calamus and from 0.03 to 0.51 within A. gramineus. The dendrogram and three-dimensional plot separated the accessions into four distinct groups (A. calamus, A. gramineus, C. antiquorum, and I. pseudacorus). Moreover, for the diversity among genus Acorus, eleven A. calamus accessions, one A. gramineus accession, and two I. pseudacorus accessions were non-destructively analyzed from their leaves by NIR spectroscopy, which discriminated Acorus accessions like the RAPD analysis. Interestingly, thirteen accessions of A. calamus were clustered into two groups based on RAPD and NIR analyses, which indicates that there are two ecotypes of A. calamus in Korea. An accession (CZ) of A. calamus with yellow stripe on leaves was closely grouped with another (CX) at a genetic distance (GD) of 0.03, which shows that the stripe trait might be generated by chimeric mutation. The genetic distance between A. calamus and A. gramineus was revealed to be farthest from 0.80 to 0.88 GD. In genus Acorus the genetic diversity and genetic variation were identified by using RAPD marker technique and non-destructive NIRs.

Genetic parameters for worm resistance in Santa Inês sheep using the Bayesian animal model

  • Rodrigues, Francelino Neiva;Sarmento, Jose Lindenberg Rocha;Leal, Tania Maria;de Araujo, Adriana Mello;Filho, Luiz Antonio Silva Figueiredo
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.185-191
    • /
    • 2021
  • Objective: The objective of this study was to estimate the genetic parameters for worm resistance (WR) and associated characteristics, using the linear-threshold animal model via Bayesian inference in single- and multiple-trait analyses. Methods: Data were collected from a herd of Santa Inês breed sheep. All information was collected with animals submitted to natural contamination conditions. All data (number of eggs per gram of feces [FEC], Famacha score [FS], body condition score [BCS], and hematocrit [HCT]) were collected on the same day. The animals were weighed individually on the day after collection (after 12-h fasting). The WR trait was defined by the multivariate cluster analysis, using the FEC, HCT, BCS, and FS of material collected from naturally infected sheep of the Santa Inês breed. The variance components and genetic parameters for the WR, FEC, HCT, BCS, and FS traits were estimated using the Bayesian inference under the linear and threshold animal model. Results: A low magnitude was obtained for repeatability of worm-related traits. The mean values estimated for heritability were of low-to-high (0.05 to 0.88) magnitude. The FEC, HCT, BCS, FS, and body weight traits showed higher heritability (although low magnitude) in the multiple-trait model due to increased information about traits. All WR characters showed a significant genetic correlation, and heritability estimates ranged from low (0.44; single-trait model) to high (0.88; multiple-trait model). Conclusion: Therefore, we suggest that FS be included as a criterion of ovine genetic selection for endoparasite resistance using the trait defined by multivariate cluster analysis, as it will provide greater genetic gains when compared to any single trait. In addition, its measurement is easy and inexpensive, exhibiting greater heritability and repeatability and a high genetic correlation with the trait of resistance to worms.

Genetic Variation in the Selected Populations of Hovenia dulcis var. koreana Nakai. Based on RAPD Analysis

  • Kim Sea-Hyun;Han Jin-Gyu;Chung Hun-Gwan;Cho Yoon-Jin;Park Hyung-Soon
    • Plant Resources
    • /
    • 제8권3호
    • /
    • pp.293-299
    • /
    • 2005
  • This study used RAPD markers to assume genetic diversity and variation in selected populations of Hovenia dulcis var. koreana. Ratio of polymorphic RAPD markers were 93.4% in selected populations of Hovenia dulcis Thunb., difference of genetic structure among populations and within populations showed 16.45%, 83.55%, respectively in amount of total genetic variation of 4 populations. Total gene diversity($H_T$) that show genetic diversity appeared 0.313 and coefficient of gene differentiation($G_{ST}$) that compare genetic differentiation of populations appeared 0.1645, analysis of AMOVA for variation among populations and within populations was significantly different (P<0.001). Genetic diversity of whole populations showed that 12.44% difference among population and 87.56% difference within populations. As a result, difference within populations was larger than difference among populations in genetic diversity. Nei's genetic distance and cluster analysis appeared that mean genetic distance among populations was 0.076, thus dividing two main groups and geographic relationship did not show in populations.

  • PDF

팽이버섯의 유전적 변이 (Genetic Variation in Flammulina velutipes)

  • 김종봉;정자인
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1434-1442
    • /
    • 2011
  • ITS 염기서열과 RAPD를 이용하여 F. velutipes 29개의 팽이버섯 품종 간의 유전적 변이를 분석하였다. ITS 부위에서 720 bp의 염기서열을 확인 하였으나 29개의 팽이품종간에 유의적인 차이가 없었다. RAPD 분석 결과 40개의 random primer 중 다형성을 나타내는 primer는 16개였으며, 그 중 뚜렸한 다형성을 띄는 primer는 OPA-2,4,3,9,10,20 이었다. 이들 29개 품종에서 primer에 의해 증폭된 밴드는 모두 3,030개 였으며, DNA 단편의 크기는 200~2,000 bp 사이에 위치하였다. 또한 3,030개의 scrabble RAPD band들을 marker로 하여 Nei-Li's의 방법을 이용한 비유사도 지수행렬을 조사한 결과 전체 29개 품종의 종내 유전적 변이는 3.3~45%였고, 특히 한국 야생팽이의 종내 유전적 변이도는 17~38.6%로 품종 간 다형성을 확인하였다. RAPD 변이에 기초하여 neighbor-joining tree (NJ) 분석에서는 5개의 cluster로 구분되었으며, 각각의 cluster는 품종, 지역 적 특성을 나타내었다. 본 연구 결과 RAPD와 실험을 통해 확인된 OPA, OPB primer의 경우 미확인 팽이품종들을 검색 하는데 분자 유전적 표지 maker로써 이용 할 수 있는 것으로 생각된다.

초위성체 마커를 활용한 가축다양성정보시스템(DAD-IS) 등재 재래닭 집단의 유전적 다양성 분석 (Genetic Diversity of Korean Native Chicken Populations in DAD-IS Database Using 25 Microsatellite Markers)

  • 노희종;김관우;이진욱;전다연;김승창;고응규;문성실;이현정;이준헌;오동엽;변재현;조창연
    • 한국가금학회지
    • /
    • 제46권2호
    • /
    • pp.65-75
    • /
    • 2019
  • 본 연구는 세계식량농업기구(FAO) 가축다양성정보시스템(DAD-IS)에 등재되어 있는 우리나라 재래닭 집단의 유전적 다양성 및 외래품종과의 차별성을 분석하기 위해 25개의 초위성체(MS) 마커를 이용하여 총 18개 집단 548수의 유전자형을 분석하였고, 이를 토대로 기대($H_{\exp}$) 및 관측이형접합도($H_{obs}$), 다형정보지수(PIC), 유전거리, 유전적 균일도 등을 계산하였다. 마커별 다형성 분석 결과, 총 195개의 대립유전자가 나타났으며, $H_{\exp}$와 PIC의 경우 MCW0145에서 각각 0.646, 0.569로 가장 높았으며, $H_{obs}$의 경우 ADL0278에서 0.773으로 가장 높은 수치를 보이고 있었던 반면, MCW0078에서는 $H_{\exp}$, $H_{obs}$, PIC가 각각 0.263, 0.291, 0.217로 가장 낮은 것을 확인할 수 있었다. 집단간 다양성 분석 결과로는 MNA, $H_{\exp}$, $H_{obs}$, PIC 모두 황갈색재래종(KNY) 집단(각각 4.60, 0.627, 0.643, 0.563)에서 가장 높게, 횡성약닭(HYD) 집단(각각 1.84, 0.297, 0.286, 0.236)에서 가장 낮게 나타났다. 대립유전자형의 빈도를 바탕으로 계산된 18개 품종간의 DA 유전거리 분석 결과, 횡성약닭(HYD)와 화이트레그혼F(LGF) 집단 사이에서 0.675로 가장 먼 유전거리를 형성하고 있었으며, 같은 품종인 로드아일랜드레드 두 집단(RRC, RRD) 사이에서 0.027로 가장 가까운 유전거리를 보였다. 한편, 같은 품종임에도 불구하고, 코니시 두 집단(COS, COH)사이에서는 0.313의 비교적 먼 유전거리를 나타내고 있었다. 집단의 실제 구조를 확인하기 위한 집단별 균일도 분석 결과, K=15에서 최적의 K값(${\Delta}K:66.22$)을 얻을 수 있었으며, 18개의 집단 중 14개의 집단에서 90% 이상의 높은 유전적 균일도를 나타내며 독립적인 군락을 형성하고 있었다. 또한, 황갈색재래종(KNY), 현인흑계(HIC), 연산오계(KNO) 집단에서도 각각 88.9%, 83.9%, 76.3%로 독립적인 군락을 형성하고 있는 것을 확인할 수 있었다. 반면, 제주재래닭(JJC)의 경우 독립적인 군락을 형성하지 못하고, 황갈색재래종(KNY) 집단이 속해 있는 2번 군락에서 가장 높은 44.3%의 균일도를 보이고 있었으며, 3번 군락(17.7%)과 8번 군락(19.1%)에도 일부 포함되어 있는 것으로 보아 집단 조성 과정에 있어 타집단과의 교잡이 일어났을 것으로 추정되며, 독립적인 집단으로 구분하는 것이 어렵기 때문에 추후 개체식별을 통한 지속적인 계획교배를 실시하여 유전적 고정화 작업이 이루어질 필요성이 있을 것으로 판단된다. 이상의 결과로 DAD-IS에 등재되어 있는 우리나라 재래닭 집단이 외래 토착종 집단과 확연하게 구분이 되며, 각 재래닭 집단간에도 비교적 뚜렷하게 구분되는 것을 확인함으로써, 고유 종자로서의 과학적인 근거를 확보할 수 있었으며, 추후 재래닭 유전자원에 대한 국가 수준의 관리 및 평가를 통해 다양한 육종 소재로 이용할 수 있는 기초자료로써 활용될 수 있을 것으로 보인다.