• Title/Summary/Keyword: Genetic algorithms (GAs)

Search Result 242, Processing Time 0.025 seconds

Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms (적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화)

  • Choe, Jeong-Nae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF

A genetic algorithms optimization framework of a parametric shipshape FPSO hull design

  • Xie, Zhitian;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.301-312
    • /
    • 2021
  • An optimization framework has been established and applied to a shipshape parametric FPSO hull design. A single point moored (SPM) shipshape floating system suffers a significant level of the roll motion in both the wave frequencies and low wave frequencies, which presents a coupling effect with the horizontal weathervane motion. To guarantee the security of the operating instruments installed onboard, a parametric hull design of an FPSO has been optimized with improved hydrodynamics performance. With the optimized parameters of the various hull stations' longitudinal locations, the optimization through Genetic Algorithms (GAs) has been proven to provide a significantly reduced level of the 1st-order and 2nd-order roll motion. This work presents a meaningful framework as a reference in the process of an SPM shipshape floating system's design.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

A Study on Genetic Algorithms to Solve Nonlinear Optimization Problems (비선형 최적화 문제 해결을 위한 유전 알고리즘에 관한 연구)

  • 윤영수;이상용;류영근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.15-22
    • /
    • 1996
  • Methods to find an optimal solution that is the function of the design variables satisfying all constraints have been studied, there are still many difficulties to apply them to optimal design problems. A method to solve the above difficulties is developed by using Genetic Algorithms. but, several problems that conventional GAs are ill defined are application of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an modified GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

Optimal Model Design of Software Process Using Genetically Fuzzy Polynomial Neyral Network (진화론적 퍼지 다항식 뉴럴 네트워크를 이용한 소프트웨어 공정의 최적 모델 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2873-2875
    • /
    • 2005
  • The optimal structure of the conventional Fuzzy Polynomial Neural Networks (FPNN)[3] depends on experience of designer. For the conventional Fuzzy Polynomial Neural Networks, input variable number, number of input variable, number of Membership Functions(MFs) and consequence structures are selected through the experience of a model designer iteratively. In this paper, we propose the new design methodology to find the optimal structure of Fuzzy Polymomial Neural Network by using Genetic Algorithms(GAs)[4, 5]. In the sequel, It is shown that the proposed Advanced Genetic Algorithms based Fuzzy Polynomial Neural Network(Advanced GAs-based FPNN) is more useful and effective than the existing models for nonlinear process. We used Medical Imaging System(MIS)[6] data to evaluate the performance of the proposed model.

  • PDF

Optimal Placement of Measurements using Genetic Algorithms for Harmonic State Estimation (고조파 상태 추정에 있어서 유전 알고리즘을 이용한 최적 측정위치 선정)

  • Chung, H.H.;Wang, Y.P.;Lee, J.P.;Park, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.298-300
    • /
    • 2002
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. In particular, the number of available harmonic instruments(Continuous Harmonic Analysis in Real Time : CHART) is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs). This HSE has been applied to the New Zealand AC Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using GAs in the HSE.

  • PDF

An approach to the interactive design process using genetic algorithms

  • Okuno, Taku;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.281-284
    • /
    • 1992
  • This paper is aiming to apply the Genetic Algorithms (GAs) to the interactive design. For that purpose, the scheme for utilizing the past design processes for the next interactive design process is proposed. In this scheme, the process consists of three phases: the searching phase, the tuning phase and the design phase. The first phase searches the optimal decision sequences for the past design instances by GAs. By the collected sequences, the second phase tunes the criteria of selecting decision sequences for the next design process. By this scheme, the implicit constraints satisfied in the past design can be applied to the next design. Finally, the computer simulations on the simple gear-train design were carried out to show the effectiveness of the scheme.

  • PDF

Preventing Premature Convergence in Genetic Algorithms with Adaptive Population Size (유전자 집단의 크기 조절을 통한 Genetic Algorithm의 조기 포화 방지)

  • 박래정;박철훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1680-1686
    • /
    • 1995
  • GAs, effective stochastic search algorithms based on the model of natural evolution and genetics, have been successfully applied to various optimization problems. When population size is not large, GAs often suffer from the phenomenon of premature convergence in which all chromosomes in the population lose the diversity of genes before they find the optimal solution. In this paper, we propose that a new heuristic that maintains the diversity of genes by adding some chromosomes with random mutation and selective mutation into population during evolution. And population size changes dynamically with supplement of new chromosomes. Experimental results for several test functions show that when population size is rather small and the length of chromosome is not long, this method is effective.

  • PDF