• 제목/요약/키워드: Genetic Parameter

검색결과 643건 처리시간 0.024초

유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구 (Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

유전알고리즘을 이용한 최적생산설계 (Optimal Production Design Using Genetic Algorithms)

  • 류영근
    • 산업경영시스템학회지
    • /
    • 제22권49호
    • /
    • pp.115-123
    • /
    • 1999
  • An optimization problem is to select the best of many possible design alternatives in a complex design space. Genetic algorithms, one of the numerous techniques to search optimal solution, have been successfully applied to various problems (for example, parameter tuning in expert systems, structural systems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with more conventional computational technique. But, conventional genetic algorithms are ill defined for two classes of problems, ie., penalty function and fitness scaling. Therefore, this paper develops Improved genetic algorithms(IGA) to solve these problems. As a case study, numerical examples are demonstrated to show the effectiveness of the Improved genetic algorithms.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

An Agent Gaming and Genetic Algorithm Hybrid Method for Factory Location Setting and Factory/Supplier Selection Problems

  • Yang, Feng-Cheng;Kao, Shih-Lin
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.228-238
    • /
    • 2009
  • This paper first presents two supply chain design problems: 1) a factory location setting and factory selection problem, and 2) a factory location setting and factory/supplier selection problem. The first involves a number of location known retailers choosing one factory to supply their demands from a number of factories whose locations are to be determined. The goal is to minimize the transportation and manufacturing cost to satisfy the demands. The problem is then augmented into the second problem, where the procurement cost of the raw materials from a chosen material supplier (from a number of suppliers) is considered for each factory. Economic beneficial is taken into account in the cost evaluation. Therefore, the partner selections will influence the cost of the supply chain significantly. To solve these problems, an agent gaming and genetic algorithm hybrid method (AGGAHM) is proposed. The AGGAHM consecutively and alternatively enable and disable the advancement of agent gaming and the evolution of genetic computation. Computation results on solving a number of examples by the AGGAHM were compared with those from methods of a general genetic algorithm and a mutual frozen genetic algorithm. Results showed that the AGGAHM outperforms the methods solely using genetic algorithms. In addition, various parameter settings are tested and discussed to facilitate the supply chain designs.

유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화 (Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm)

  • 김선주;지용근;김필식
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구 (Application of multi-objective genetic algorithm for waste load allocation in a river basin)

  • 조재현
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

유전알고리즘을 이용한 규칙 기반 (Optimal Design for Rule-Based Fuzzy Logic Controller Using GA)

  • 노기갑;주영훈;박진배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents an optimal design method for fuzzy logic controllers using genetic algorithms. In general, the design of fuzzy logic controllers has difficulties in the acquisition of exper's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may have ignored, and parameters of the fuzzy logic controller obtained by expert's control action may not be global. To solve these problems, the proposed method using genetic algorithms in this paper, can tune the parameters of fuzzy logic controller including scaling factors and determine the appropriate number of fuzzy reles systematically and automatically. We provide the second drder dead time plant and inverted pendulum system to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed controller can producd higher accuracy and a smaller number of fuzzy rules than manually tuned fuzzy logic controller.

  • PDF

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

DC 서보모터의 속도제어를 위한 GAs의 PID 계수조정에 관한 연구 (A Study on the PID Order tuning by GAs for Velocity Control of DC Servo Motor)

  • 박재형;김성곤;이상관
    • 한국정보통신학회논문지
    • /
    • 제9권8호
    • /
    • pp.1840-1846
    • /
    • 2005
  • 본 논문에서는 유전 알고리즘을 사용하여 PID의 각 계수를 자동적으로 조정함으로써 DC 서보모터의 속도제어에 적용하였다. DC 서보모터는 산업현장 및 로봇분야에 널리 적용되고 있으며 적절한 제어성능을 얻기 위하여 많은 시행착오에 의한 다양한 제어방법이 사용되고 있다. 그러나 산업현장, 플랜트의 변화 및 외란에 강인한 제어알고리즘을 선택하기가 매우 어려우며 많은 시행착오를 통하여 원하는 계수값을 얻어 낼 수 있다. 따라서 본 논문에서는 이러한 문제점을 해결하고 DC 서보모터의 제어성능을 향상시키기 위하여 유전 알고리즘을 적용함으로써 우수한 응답특성을 얻을 수 있었다.

유전 알고리듬을 이용한 퍼지 제어기의 설계 자동화 및 매개 변수 최적화 (Optimization of Fuzzy Logic Controller Using Genetic Algorithm)

  • 장욱;손유석;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.65-67
    • /
    • 1996
  • This paper presents the automatic construction and parameter optimization technique for the fuzzy logic controller using genetic algorithm. In general the design of fuzzy controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. Therefor the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may lave ignored. And fuzzy logic controller parameters elicited form the expert may not be global. Some of these problems can be resolved by application of genetic algorithm. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed method can produce a fuzzy logic controller with higher accuracy and a smaller number of fuzzy roles than manually billed fuzzy logic controller.

  • PDF