• Title/Summary/Keyword: Genetic Factor

Search Result 1,182, Processing Time 0.025 seconds

Differences in Epidermal Growth Factor Receptor Gene Mutations and Relationship with Clinicopathological Features in NSCLC Between Uygur and Han Ethnic Groups

  • Zhang, Yan;Wang, Qiang;Han, Zhi-Gang;Shan, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2879-2883
    • /
    • 2013
  • Objective: To investigate differences in mutations of epidermal growth factor receptor (EGFR) gene and relationships with clinicopathological features in patients with non-small cell lung cancer (NSCLC) between Uygur and Han ethnic groups. Methods: The Scorpions amplification refractory mutation system (Scorpions ARMS) was used to measure mutations in exons 18, 19, 20 and 21 of the EGFR gene in paraffin-embedded tumor tissue from NSCLC cases, and statistical analysis was performed to investigate links with clinicopathological features in different histological types of NSCLC. Results: Results from ARMS testing showed EGFR mutations in tumor tissues from six (6) of 50 NSCLC patients of Uygur ethnic group, with a positive rate of 12.0%; four of them (4) had exon 19 deletion in EGFR, and two (2) had L858R point mutation in exon 21 of EGFR. Statistically significant difference was noted in EGFR genetic mutation between adenocarcinoma and non-adenocarcinoma (P < 0.05), but no differences with gender, age group, smoking status, or stage (P > 0.05). EGFR mutations were detected in tumor tissues from 27 of 49 NSCLC patients of Han ethnic group, with a positive rate of 55.1%; 19 of them had exon 19 deletions, seven (7) had L858R point mutations in exon 21 of EGFR and one (1) had mutations in both exon 18 G719X and exon 20 T790M of EGFR. Statistically significant differences were noted in EGFR genetic mutations between genders and between adenocarcinoma and non-adenocarcinoma (P<0.05), but not with age group, smoking status, or stage (P > 0.05). Conclusion: Statistically significant differences were noted in the positive rates of EGFR genetic mutations in NSCLC patients between Uygur and Han ethnic groups, with lower positive rates for the Uygur cases.

Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation

  • Lee, Ji Eun;Park, Jong Il;Myung, Cheol Hwan;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.268-276
    • /
    • 2017
  • Background: UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. Methods: We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. Results: When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. Conclusion: In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.

Sustainable Closed-loop Supply Chain Model for Mobile Phone: Hybrid Genetic Algorithm Approach (모바일폰을 위한 지속가능한 폐쇄루프 공급망 모델: 혼합유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • In this paper, a sustainable close-loop supply chain (SCLSC) model is proposed for effectively managing the production, distribution and handling process of mobile phone. The proposed SCLSC model aims at maximizing total profit as economic factor, minimizing total CO2 emission amount as environmental factor, and maximizing social influence as social factor in order to reinforce sustainability in it. Since these three factors are represented as each objective function in modeling, the proposed SCLSC model can be taken into consideration as a multi-objective optimization problem and solved using a hybrid genetic algorithm (HGA) approach. In numerical experiment, three different scales of the SCLSC model are presented and the efficiency of the HGA approach is proved using various measures of performance.

Inhibitory effect of Korean Red Ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling

  • Oh, Chang Taek;Park, Jong Il;Jung, Yi Ra;Joo, Yeon Ah;Shin, Dong Ha;Cho, Hyoung Joo;Ahn, Soo Mi;Lim, Young-Ho;Park, Chae Kyu;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Korean Red Ginseng (KRG) has been reported to exert anticancer, anti-oxidant, and anti-inflammatory effects. However, there has been no report on the effect of KRG on skin pigmentation. In this study, we investigated the inhibitory effect of KRG on melanocyte proliferation. KRG extract (KRGE) at different concentrations had no effect on melanin synthesis in melan-A melanocytes. Saponin of KRG (SKRG) inhibited melanin content to 80% of the control at 100 ppm. Keratinocyte-derived factors induced by UV-irradiation were reported to stimulate melanogenesis, differentiation, proliferation, and dendrite formation. In this study, treatment of melan-A melanocytes with conditioned media from UV-irradiated SP-1 keratinocytes increased melanocyte proliferation. When UV-irradiated SP-1 keratinocytes were treated with KRGE or SKRG, the increase of melanocyte proliferation by the conditioned media was blocked. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced and released from UV-irradiated keratinocytes. This factor has been reported to be involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, GM-CSF was significantly increased in SP-1 keratinocytes by UVB irradiation ($30mJ/cm^2$), and the proliferation of melan-A melanocytes increased significantly by GM-CSF treatment. In addition, the proliferative effect of keratinocyte-conditioned media on melan-A melanocytes was blocked by anti-GM-CSF treatment. KRGE or SKRG treatment decreased the expression of GM-CSF in SP-1 keratinocytes induced by UVB irradiation. These results demonstrate that UV irradiation induced GM-CSF expression in keratinocytes and KRGE or SKRG inhibited its expression. Therefore, KRG could be a good candidate for regulating UV-induced melanocyte proliferation.

Genetic Structure and Composition of Genetic Diversity in the Kouchi Sub-breed of the Japanese Brown Cattle Population

  • Honda, Takeshi;Fujii, Toshihide;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1631-1635
    • /
    • 2007
  • Japanese Brown cattle, one of the four domestic beef breeds in Japan, are suffering from numerical reduction due to economic pressure from profitable breeds. In this study, all the reproductive cows in the Kouchi sub-breed of the Japanese Brown cattle that were alive in July 2005 were investigated by pedigree analysis to clarify genetic structure and composition of genetic variability. In addition, genetically important individuals for the maintenance of genetic variability of the sub-breed were also identified through the core set method. The number of cows analyzed was 1,349. Their pedigrees were traced back to ancestors born around 1940, and pedigree records of 13,157 animals were used for the analysis. Principal component analysis was performed on the relationship matrix of the cows, and their factor loadings were plotted on a three-dimensional diagram. According to their spatial positions in the diagram, all the cows were subdivided into five genetically distinctive subpopulations of 131 to 437 animals. Genetic diversity of the whole sub-breed, which is estimated to be 0.901, was decomposed into 0.856 and 0.045 of within-subpopulation and between-subpopulation components. Recalculation of genetic diversity after removal of one or several subpopulations from the five subpopulations suggested that three of them were genetically important for the maintenance of genetic variability of the sub-breed. Applying the core set method to all the cows, maximum attainable genetic diversity was estimated to be 0.949, and optimal genetic contributions assigned to each cow supported the previous results indicating relative importance of the three subpopulations as useful genetic materials.

Cloning and Expression of Human Clotting Factor 9 cDNA un Escherichia coli (인체 혈액응고 9인자 cDNA cloning 및 Escherichia coli 에서의 발현)

  • Young Won Lee;Hyang Suk Hur;Myoung Hee Kim
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.231-240
    • /
    • 1996
  • Human blood clotting (coagulation) factor 9 cDNA which codes for 461 amino acid has been cloned by screening human fetal liver cDNA library using PCR. This 1.4 kb cDNA spanning from the ATG initiation codon to the TAA termination codon was cloned into bacterial .expression vector pGEX-2T, generating pGEX-F9 plasmid. The plasmid pGEX-F9 expresses about 73 kDa GST (Glutathione S-transferase)-Factor 9 fusion protein when introduced into E. coli. Western blot analysis using polyclonal antibody raised against human factor 9 confirmed this fusion protein contains factor 9 protein. The level of GST-factor 9 expression was about 20% of total protein and the purification of fusion protein was efficiently achieved by using GST agarose bead based on one step purification protocol.

  • PDF

Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems (연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬)

  • Gwon, Yeong-Du;Gwon, Sun-Beom;Gu, Nam-Seo;Jin, Seung-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

Genetic Diversity of Barley Cultivars as Revealed by SSR Masker

  • Kim, Hong-Sik;Park, Kwang-Geun;Baek, Seong-Bum;Suh, Sae-Jung;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.379-383
    • /
    • 2002
  • Allelic diversity of 44 microsatellite marker loci originated from the coding regions of specific genes or the non-coding regions of barley genome was analyzed for 19 barley genotypes. Multi-allelic variation was observed at the most of marker loci except for HVM13, HVM15, HVM22, and HVM64. The number of different alleles ranged from 2 to 12 with a mean of 4.0 alleles per micro-satellite. Twenty-one alleles derived from 10 marker loci are specific for certain genotypes. The level of polymorphism (Polymorphic Information Content, PIC) based on the band pattern frequencies among genotypes was relatively high at the several loci such as HVM3, HVM5, HVM14, HVM36, HVM62 and HVM67. In the cluster analysis using genetic similarity matrix calculated from microsatellite-derived DNA profiles, two major groups were classified and the spike-row type was a major factor for clustering. Correlation between genetic similarity matrices based on microsatellite markers and pedigree data was highly significant ($r=0.57^{**}$), but these two parameters were moderately associated each other. On the other hand, RAPD-based genetic similarity matrix was more highly associated with microsatellite-based genetic similarity ($r=0.63^{**}$) than coefficient of parentage.

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Kang, Seunghyun;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.

Clinical and Laboratory Features to Consider Genetic Evaluation among Children and Adolescents with Short Stature

  • Seokjin Kang
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2023
  • Conventional evaluation method for identifying the organic cause of short stature has a low detection rate. If an infant who is small for gestational age manifests postnatal growth deterioration, triangular face, relative macrocephaly, and protruding forehead, a genetic testing of IGF2, H19, GRB10, MEST, CDKN1, CUL7, OBSL1, and CCDC9 should be considered to determine the presence of Silver-Russell syndrome and 3-M syndrome. If a short patient with prenatal growth failure also exhibits postnatal growth failure, microcephaly, low IGF-1 levels, sensorineural deafness, or impaired intellectual development, genetic testing of IGF1 and IGFALS should be conducted. Furthermore, genetic testing of GH1, GHRHR, HESX1, SOX3, PROP1, POU1F1, and LHX3 should be considered if patients with isolated growth hormone deficiency have short stature below -3 standard deviation score, barely detectable serum growth hormone concentration, and other deficiencies of anterior pituitary hormone. In short patients with height SDS <-3 and high growth hormone levels, genetic testing should be considered to identify GHR mutations. Lastly, when severe short patients (height z score <-3) exhibit high levels of prolactin and recurrent pulmonary infection, genetic testing should be conducted to identify STAT5B mutations.