• Title/Summary/Keyword: Genetic Diversity Loss

Search Result 35, Processing Time 0.022 seconds

Inbreeding and Genetic Diversity in Three Imported Swine Breeds in China Using Pedigree Data

  • Tang, G.Q.;Xue, J.;Lian, M.J.;Yang, R.F.;Liu, T.F.;Zeng, Z.Y.;Jiang, A.A.;Jiang, Y.Z.;Zhu, L.;Bai, L.;Wang, Z.;Li, X.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.755-765
    • /
    • 2013
  • The accumulation of inbreeding and the loss of genetic diversity is a potential problem in the modern swine breeds in China. Therefore, the purpose of this study was to analyze the pedigrees of Chinese Duroc (CD), Landrace (CL) and Yorkshire (CY) swine to estimate the past and current rates of inbreeding, and to identify the main causes of genetic diversity loss. Pedigree files from CD, CL and CY containing, 4529, 16,776 and 22,600 records, respectively, were analyzed. Pedigree completeness indexes of the three breeds, accounting for one generation back, were 83.72, 93.93 and 93.59%, respectively. The estimated average annual inbreeding rates for CD, CL and CY in recent three years were 0.21, 0.19 and 0.13%, respectively. The estimated average percentage of genetic diversity loss within each breed in recent three years was about 8.92, 2.19, and 3.36%, respectively. The average relative proportion of genetic diversity loss due to unequal contributions of founders in CD, CL and CY was 69.09, 57.95 and 60.57%, and due to random genetic drift was 30.91, 42.05 and 39.43%, respectively. The estimated current effective population size for CD, CL and CY was 76, 117 and 202, respectively. Therefore, CD has been found to have lost considerable genetic diversity, demanding priority for optimizing the selection and mating to control future coancestry and inbreeding. Unequal contribution of founders was a major cause of genetic diversity loss in Chinese swine breeds and random genetic drift also showed substantial impact on the loss of diversity.

Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins

  • Zou, Kunyan;Kim, Ki-Seung;Lee, Daewoong;Jun, Tae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.447-456
    • /
    • 2020
  • Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.

Application of genomic big data to analyze the genetic diversity and population structure of Korean domestic chickens

  • Eunjin Cho;Minjun Kim;Jae-Hwan Kim;Hee-Jong Roh;Seung Chang Kim;Dae-Hyeok Jin;Dae Cheol Kim;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.912-921
    • /
    • 2023
  • Genetic diversity analysis is crucial for maintaining and managing genetic resources. Several studies have examined the genetic diversity of Korean domestic chicken (KDC) populations using microsatellite markers, but it is difficult to capture the characteristics of the whole genome in this manner. Hence, this study analyzed the genetic diversity of several KDC populations using high-density single nucleotide polymorphism (SNP) genotype data. We examined 935 birds from 21 KDC populations, including indigenous and adapted Korean native chicken (KNC), Hyunin and Jeju KDC, and Hanhyup commercial KDC populations. A total of 212,420 SNPs of 21 KDC populations were used for calculating genetic distances and fixation index, and for ADMIXTURE analysis. As a result of the analysis, the indigenous KNC groups were genetically closer and more fixed than the other groups. Furthermore, Hyunin and Jeju KDC were similar to the indigenous KNC. In comparison, adapted KNC and Hanhyup KDC populations derived from the same original species were genetically close to each other, but had different genetic structures from the others. In conclusion, this study suggests that continuous evaluation and management are required to prevent a loss of genetic diversity in each group. Basic genetic information is provided that can be used to improve breeds quickly by utilizing the various characteristics of native chickens.

A double-labeling marker-based method for estimating inbreeding and parental genomic components in a population under conservation

  • Li, Wenting;Zhang, Mengmeng;Wang, Kejun;Lu, Yunfeng;Tang, Hui;Wu, Keliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Objective: The objective of a conservation program is to maintain maximum genetic diversity and preserve the viability of a breed. However, the efficiency of a program is influenced by the ability to accurately measure and predict genetic diversity. Methods: To examine this question, we conducted a simulation in which common measures (i.e. heterozygosity) and novel measures (identity-by-descent probabilities and parental genomic components) were used to estimate genetic diversity within a conserved population using double-labeled single nucleotide polymorphism markers. Results: The results showed that the accuracy and sensitivity of identity-by-state probabilities and heterozygosity were close to identity by descent (IBD) probabilities, which reflect the true genetic diversity. Expected heterozygosity most closely aligned with IBD. All common measures suggested that practices used in the current Chinese pig conservation program result in a ~5% loss in genetic diversity every 10 generations. Parental genomic components were also analyzed to monitor real-time changes in genomic components for each male and female ancestor. The analysis showed that ~7.5% of male families and ~30% of female families were lost every 5 generations. After 50 generations of simulated conservation, 4 male families lost ~50% of their initial genomic components, and the genomic components for 24.8% of the female families were lost entirely. Conclusion: In summary, compared with the true genetic diversity value obtained using double-labeled markers, expected heterozygosity appears to be the optimal indicator. Parental genomic components analysis provides a more detailed picture of genetic diversity and can be used to guide conservation management practices.

Evaluation of Inbreeding and Genetic Variability of Five Pig Breeds in Czech Republic

  • Krupa, Emil;Zakova, E.;Krupova, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2015
  • The complex analysis of the pedigree records of Czech Landrace (CLA), Czech Large White-dam line (CLWd), Czech Large White-sire line (CLWs), Duroc (DC), and Pietrain (PN) was performed to determine trends of genetic diversity (GD), and to find the main sources of the GD loss. The total size of the pedigree was 132,365, 391,151, 32,913, 13,299, and 7,160 animals in CLA, CLWd, CLWs, DC, and PN, respectively. Animals born in the years 2011 through 2013 were assumed as the reference population. The average pedigree completeness index for one generation back was 95.9%, 97.4%, 91.2%, 89.8%, and 94.2% for appropriate breeds. Number of ancestors explaining 100% of gene pool was 186, 373, 125, 157, and 37 in CLA, CLWd, CLWs, DC, and PN, respectively. The relative proportion of inbred animals (58%, 58%, 54%, 47%, and 25%), the average inbreeding (2.7%, 1.4%, 2.5%, 3.6%, and 1.3%) and the average co-ancestry (3.1%, 1.6%, 3.3%, 4.2%, and 3.3%) were found over the past decade in analysed breeds. The expected inbreeding under random mating increased during the last 10 years in CLWs and PN and varied from 1.27% to 3.2%. The effective population size computed on the basis of inbreeding was 76, 74, 50, 35, and 83 in 2012 in CLA, CLWd, CLWs, DC, and PN, respectively. The shortest generation interval (1.45) was observed for CLWd in sire to son selection pathway. The longest generation interval obtained PN (1.95) in sire to daughter pathway. The average relative GD loss within last generation interval was 7.05%, 4.70%, 9.81%, 7.47%, and 10.46%, respectively. The relative proportion of GD loss due to genetic drift on total GD loss was 85.04%, 84.51%, 89.46%, 86.19%, and 83.68% in CLA, CLWd, CLWs, DC, and PN, respectively. All breeds were characterized by a high proportion of inbred animals, but the average inbreeding was low. The most vulnerable breeds to loss of GD are DC and PN. Therefore, a breeding program should be more oriented to prevent the increase of GD loss in these breeds.

Allozyme Variation and Population Genetic Structure of an Invasive Plant, Ageratina altissima(White Snakeroot), in Seoul

  • Chun, Young-Jin;Lee, Hyun-Woo;Lee, Eun-Ju
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.309-312
    • /
    • 2001
  • Allozyme studies have been widely used to estimate genetic variation and to describe genetic structure in natural populations. In many cases, the genetic diversity of recently established populations is generally lower than that of central populations. In addition, the genetic composition of an invasive species is influenced by its History of introduction as well as its ecological characters. Ageratina altissima (L.) R. King & H. Robinson (white snakeroot) is a perennial herb native to the eastern United States and Canada, and is currently receiving much attention for its rapid invasion of the Korean forests. Starch gel electrophoresis was used to assess the genetic variability at 11 putative loci in seven introduced populations of A. altissima in Seoul. Populations of A. altissima maintained lower levels of allozyme diversity (expected heterozygosity = 0.063) than those reported for other taxa with similar ecological traits. The degree of differentiation observed among A. altissima populations was considerably low. It is suggested that the populations were recently established from only a few founders via dispersal by human activities, resulting in the loss of genetic variation.

  • PDF

Genetic diversity analysis of fourteen geese breeds based on microsatellite genotyping technique

  • Moniem, Hebatallah Abdel;Zong, Yang Yao;Abdallah, Alwasella;Chen, Guo-hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1664-1672
    • /
    • 2019
  • Objective: This study aimed to measure genetic diversity and to determine the relationships among fourteen goose breeds. Methods: Microsatellite markers were isolated from the genomic DNA of geese based on previous literature. The DNA segments, including short tandem repeats, were tested for their diversity among fourteen populations of geese. The diversity was tested on both breeds and loci level and by mean of unweighted pair group method with arithmetic mean and structure program, phylogenetic tree and population structure were tested. Results: A total of 108 distinct alleles (1%) were observed across the fourteen breeds, with 36 out of the 108 alleles (33.2%) being unique to only one breed. Genetic parameters were measured per the 14 breeds and the 9 loci. Medium to high heterozygosity was reported with high effective numbers of alleles (Ne). Polymorphic information contents (PIC) of the screened loci was found to be highly polymorphic for eleven breeds; while 3 breeds were reported moderately polymorphic. Breeding coefficient ($F_{IS}$) ranged from -0.033 to 0.358, and the pair wise genetic differentiation ($F_{ST}$) ranged from 0.01 to 0.36 across the fourteen breeds; for the 9 loci observed and expected heterozygosity, and Ne were same as the breeds parameters, PIC of the screened loci reported 6 loci highly polymorphic and 3 loci to be medium polymorphic, and $F_{IS}$ ranged from -0.113 to 0.368. In addition, genetic distance estimate revealed a close genetic distance between Canada goose and Hortobagy goose breeds by 0.04, and the highest distance was between Taihu goose and Graylag goose (anser anser) breed by 0.54. Conclusion: Cluster analyses were made, and they revealed that goose breeds had hybridized frequently, resulting in a loss of genetic distinctiveness for some breeds.

Genetic Diversity of avrBs-like Genes in Three Different Xanthomonas Species Isolated in Korea

  • Oh, Chang-Sik;Lee, Seung-Don;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Plant-pathogenic bacteria including Xanthomonas spp. carry genetic diversity in composition of avirulence genes for interaction with their host plants. Previously, we reported genetic diversity of avirulence genes in X. axonopodis pv. glycines. In this study, we determined genetic diversity of five avirulence genes, avrBs1, avrBs2, avrBs3, avrBs4, and avrRxv, in three other Xanthomonas species isolated in Korea by genomic southern hybridization. Although Korean races of X. campestris pv. vesicatoria that were isolated from year 1995 to 2002 had the same avirulence gene patterns as those that already reported, there was race shift from race 3 to race 1 by acquisition of avrBs3 genes. X. campestris pv. campestris isolated from Chinese cabbage, but not from cabbage or radish, carried two avrBs3 genes, and one of them affected HR-eliciting ability of this bacterium in broccoli. X. oryzae pv. oryzae carried eight to thirteen avrBs3 gene homologs, and this bacterium showed dynamic changes of resistance patterns in rice probably by losing or obtaining avrBs3 genes. These results indicate that avrBs3 gene is more diverse in Xanthomonas spp. than other four avirulence genes and also host ranges of these bacteria can be easily changed by loss or acquisition of avrBs3 genes.

Taxonomic Review of the Genus Echinochloa in Korea (II): Inferred from Simple Sequence Repeats

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.190-195
    • /
    • 2014
  • Echinochloa (L.) P. Beauv. includes some of the noxious weeds, causing a serious yield loss when they are dominant in the fields. Identification of the Echinochloa is very difficult because many interspecific and intraspecific forms of the species are found. However, it is important to identify the species exactly and to know the genetic diversity of the species for effective weed management. This study was conducted to identify and summarize the Echinochloa species by comparing the genetic variation and relationship among Korean Echinochloa species using SSR. The genetic diversity of 107 individuals, including seven species were assessed using five SSR markers. UPGMA dendrogram generated two clades (I and II) and clade II divided again into two subclades (II-1 and II-2) whereas the model based genetic structure proposed four subpopulations. The two subpopulations were corresponded to clades I and II-1 and the other two were arranged to clade II-2 of the UPGMA dendrogram. We have concluded that E. colona and E. glabrescens might have not distributed in Korea. The biological varieties, praticola and echinata, of E. crus-galli should be treated as E. crus-galli. Korean Echinochloa should be summarized with four species, i.e., E. oryzicola, E. crus-galli, E. esculenta, and E. oryzoides.

Genetic diversity of wild and farmed black sea bream populations in Jeju

  • An, Hye-Suck;Hong, Seong-Wan;Lee, Jung-Uie;Park, Jung-Youn;Kim, Kyung-Kil
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2010
  • Black sea bream, Acanthopagrus schlegelii, is a commercially important fish in Korea. As a preliminary investigation into the effect of hatchery rearing for stock enhancement, we examined genetic diversity between wild and farmed black sea bream populations from Jeju using six microsatellite markers. High levels of polymorphism were observed between the two populations. A total of 87 different alleles were found at the loci, with some alleles being unique. Allelic variability ranged from 8 to 22 in the wild population and from 7 to 17 in the farmed one. Average observed and expected heterozygosities were estimated at 0.87 and 0.88 in the wild sample. The corresponding estimates were 0.83 and 0.86 in the farmed sample. Although a considerable loss of rare alleles was observed in the farmed sample, no statistically significant reductions were found in heterozygosity or allelic diversity in the farmed sample, compared with the wild one. Significant genetic heterogeneity was found between the wild and farmed populations. These results suggest that more intensive breeding practices for stock enhancement may have resulted in a further decrease of genetic diversity. Thus, it is necessary to monitor genetic variation in bloodstock, progeny, and target populations and control inbreeding in a commercial breeding program for conservation. This information may be useful for fisheries management and the aquaculture industry.