• 제목/요약/키워드: Genetic Correlations

검색결과 391건 처리시간 0.021초

Genetic correlations between first parity and accumulated second to last parity reproduction traits as selection aids to improve sow lifetime productivity

  • Noppibool, Udomsak;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권3호
    • /
    • pp.320-327
    • /
    • 2017
  • Objective: The objective of this research was to estimate genetic correlations between number of piglets born alive in the first parity (NBA1), litter birth weight in the first parity (LTBW1), number of piglets weaned in the first parity (NPW1), litter weaning weight in the first parity (LTWW1), number of piglets born alive from second to last parity (NBA2+), litter birth weight from second to last parity (LTBW2+), number of piglets weaned from second to last parity (NPW2+) and litter weaning weight from second to last parity (LTWW2+), and to identify the percentages of animals (the top 10%, 25%, and 50%) for first parity and sums of second and later parity traits. Methods: The 9,830 records consisted of 2,124 Landrace (L), 724 Yorkshire (Y), 2,650 LY, and 4,332 YL that had their first farrowing between July 1989 and December 2013. The 8-trait animal model included the fixed effects of first farrowing year-season, additive genetic group, heterosis of the sow and the litter, age at first farrowing, and days to weaning (NPW1, LTWW1, NPW2+, and LTWW2+). Random effects were animal and residual. Results: Heritability estimates ranged from $0.08{\pm}0.02$ (NBA1 and NPW1) to $0.29{\pm}0.02$ (NPW2+). Genetic correlations between reproduction traits in the first parity and from second to last parity ranged from $0.17{\pm}0.08$ (LTBW1 and LTBW2+) to $0.67{\pm}0.06$ (LTWW1 and LTWW2+). Phenotypic correlations between reproduction traits in the first parity and from second to last parity were close to zero. Rank correlations between LTWW1 and LTWW2+ estimated breeding value tended to be higher than for other pairs of traits across all replacement percentages. Conclusion: These rank correlations indicated that selecting boars and sows using genetic predictions for first parity reproduction traits would help improve reproduction traits in the second and later parities as well as lifetime productivity in this swine population.

Comparison of Breeding System Between Single Population and Two Sub-population Scheme by Computer Simulation I. Equal genetic level for Sub-populations

  • Oikawa, T.;Matsura, Y.;Sato, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.422-427
    • /
    • 1997
  • Breeding efficiency was investigated to reveal crucial factors for constructing effective breeding system with subdivided populations under equal genetic level. Simulation study of selection experiment was performed for 20 generations with 20 replications each, comparing average breeding values and inbreeding coefficients between the two breeding systems; single population scheme and two population scheme, each of which had the same genetic parameters. Genetic correlations (-0.5 to 0.5) were assumed to be caused only by pleiotropic effect of a gene. Phenotypes of the two traits generated by polygenic effect with additive 36 loci and residuals distributed normally were selected by two traits selection index procedure. Comparing between the single population scheme and the two population scheme, the single population scheme showed higher genetic gain with lower inbreeding coefficient. This result was confirmed particularly for the situation of high selection intensity, high heritability and high degree of unevenness for economic weight. Genetic correlations in the single population scheme were significantly lower than the two population scheme when initial genetic correlation was negative. When terminal crossbreeding for the two population scheme is taken into account, superiority of the two population scheme was suggested. The terminal crossbreeding was effective under the situation of long term selection, existence of moderate inbreeding depression and use of less extreme economic weight.

Estimation of Genetic Variance and Covariance Components for Litter Size and Litter Weight in Danish Landrace Swine Using a Multivariate Mixed Model

  • Wang, C.D.;Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권7호
    • /
    • pp.1015-1018
    • /
    • 1999
  • Single trait mixed models have been dominantly utilized for genetic evaluation of the reproductive traits in swine. However employing multiple trait approach may lead to more accurate genetic evaluations. For 5 litter size and litter weight traits of Danish Landrace, genetic parameters were estimated with a multiple trait mixed model. The heritability estimates were 0.02, 0.03, 0.03, 0.05, and 0.07, respectively for litter size at birth, litter size born alive, litter weight at birth, litter size at weaning, and litter weight at weaning. Negative genetic correlations were all positive. The litter weight at birth showed genetic antagonism with litter size born alive (-0.65) and litter size at weaning (-0.31), but positive with litter size at birth (0.47) and litter weight at weaning (0.31). The estimates of environmental correlations were larger than their corresponding genetic correlation estimates except for those between litter weight at birth and the other four traits. This study recommends simultaneous selection for two or more traits with multivariate mixed models in order to improve overall economic response.

한국재래계의 난형지수 및 난질에 대한 유전력 및 유전상관의 추정 (Estimation of the Heritabilities and Genetic Correlations on Egg Shape Index and Internal Egg Qualities in Korean Native Chicken)

  • 한성욱;상병찬;이준헌;정욱수;상병돈
    • 한국가금학회지
    • /
    • 제25권3호
    • /
    • pp.103-111
    • /
    • 1998
  • This study was carried out to estirnate the heritabilities and genetic correlations on egg shape index and internal egg qualities ; shell thickness, alburnin heights and Haugh units for breeding plan and selection in Korean native chicken. Data analyzed were the records of 46,908 eggs from 43() layers from April, 1994 to September, 1995. The egg shape index at the first egg, 300 days and 500 days of ages were 74.771, 74.468 and 73.702; the shell thickness were 0.345, 0.344 and 0. 334mm; the alburnen heights were 6.579, 6.130 and 5.318mm; the Haugh units were 86.859, 81.014 and 73.565 respectively. The heritability estimates of egg shape index and internal egg qualities based on the variance of sire, dam and combined components at 300 days of age were 0.136, 0.954 and 0.545 for egg shape index; 0.201, 0.622 and 0.421 for shell thickness; 0.410, 0.961 and 0.633 for albumen height ; 0.353, 0.962 and': 0.608 for Haugh units. The genetic correlation coefficient between shell thickness and albumen height was -0.044~0.824; 0.016~0.949 between Haugh units and shell thickness 0.313~0.941 between albumen height and Haugh units, respectively.

  • PDF

Genetic parameters of milk and lactation curve traits of dairy cattle from research farms in Thailand

  • Pangmao, Santi;Thomson, Peter C.;Khatkar, Mehar S.
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1499-1511
    • /
    • 2022
  • Objective: This study was aimed to estimate the genetic parameters, including genetic and phenotypic correlations, of milk yield, lactation curve traits and milk composition of Thai dairy cattle from three government research farms. Methods: The data of 25,789 test-day milk yield and milk composition records of 1,468 cattle from lactation 1 to 3 of Holstein Friesian (HF) and crossbred HF dairy cattle calved between 1990 and 2015 from three government research farms in Thailand were analysed. 305-day milk yield was estimated by the Wood model and a test interval method. The Wood model was used for estimating cumulative 305-day milk yield, peak milk yield, days to peak milk yield and persistency. Genetic parameters were estimated using linear mixed models with herd, breed group, year and season of calving as fixed effects, and animals linked to a pedigree as random effects, together with a residual error. Univariate models were used to estimate variance components, heritability, estimated breeding values (EBVs) and repeatability of each trait, while pairwise bivariate models were used to estimate covariance components and correlations between traits in the same lactation and in the same trait across lactations. Results: The heritability of 305-day milk yield, peak milk yield and protein percentage have moderate to high estimates ranging from 0.19 to 0.45 while days to peak milk yield, persistency and fat percentage have low heritability ranging from 0.08 to 0.14 in lactation 1 cows. Further, heritability of most traits considered was higher in lactation 1 compared with lactations 2 and 3. For cows in lactation 1, high genetic correlations were found between 305-day milk yield and peak milk yield (0.86±0.07) and days to peak milk yield and persistency (0.99±0.02) while estimates of genetic correlations between the remaining traits were imprecise due to the high standard errors. The genetic correlations within the traits across lactation were high. There was no consistent trend of EBVs for most traits in the first lactation over the study period. Conclusion: Both the Wood model and test interval method can be used for milk yield estimates in these herds. However, the Wood model has advantages over the test interval method as it can be fitted using fewer test-day records and the estimated model parameters can be used to derive estimates of other lactation curve parameters. Milk yield, peak milk yield and protein percentage can be improved by a selection and mating program while days to peak milk yield, persistency and fat percentage can be improved by including into a selection index.

Recent advances in breeding and genetics for dairy goats

  • Gipson, Terry A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1275-1283
    • /
    • 2019
  • Goats (Capra hircus) were domesticated during the late Neolithic, approximately 10,500 years ago, and humans exerted minor selection pressure until fairly recently. Probably the largest genetic change occurring over the millennia happened via natural selection and random genetic drift, the latter causing genes to be fixed in small and isolated populations. Recent human-influenced genetic changes have occurred through biometrics and genomics. For the most part, biometrics has concentrated upon the refining of estimates of heritabilities and genetic correlations. Heritabilities are instrumental in the calculation of estimated breeding values and genetic correlations are necessary in the construction of selection indices that account for changes in multiple traits under selection at one time. Early genomic studies focused upon microsatellite markers, which are short tandem repeats of nucleic acids and which are detected using polymerase chain reaction primers flanking the microsatellite. Microsatellite markers have been very important in parentage verification, which can impact genetic progress. Additionally, microsatellite markers have been a useful tool in assessing genetic diversity between and among breeds, which is important in the conservation of minor breeds. Single nucleotide polymorphisms are a new genomic tool that have refined classical BLUP methodology (biometric) to provide more accurate genomic estimated breeding values, provided a large reference population is available.

Estimation of Genetic Parameters for Direct and Maternal Effects on Litter Size and Teat Numbers in Korean Seedstock Swine Population

  • Song, Guy-Bong;Lee, Jun-Ho;Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • 제52권3호
    • /
    • pp.187-190
    • /
    • 2010
  • The objective of this study was to estimate genetic parameters for total number of born (TNB), number of born alive (NBA) and teat numbers (TN) of Landrace and Yorkshire breeds in Korean swine population using multiple trait animal model procedures. Total numbers of 4,653 records for teat numbers and 8,907 records for TNB and NBA collected from 2004 to 2008 on imported breeding pigs and their litter size records were used in this study. To find the appropriate model for estimation of genetic parameters (heritabilities and genetic correlations), five statistical models (two models for reproductive traits, two models for teat numbers, one model for combining these traits) considering only direct additive genetic effects, including maternal effects were used and Akaike information criteria (AIC) of each two models for reproductive traits and teat trait were compared. The means and standard deviations of TNB, NBA, and TN were $11.52{\pm}3.34$, $10.55{\pm}2.96$ and $14.30{\pm}0.83$, respectively. Estimated heritabilities for TNB and NBA traits using the model which considered only additive genetic effect were low (0.06 and 0.05, respectively). However, estimated heritabilities considering maternal genetic effects were a little bit higher than that of the model considering only additive genetic effect (0.09 for TNB and NBA, respectively). Estimated heritability for TN using the model which considered only additive genetic effect was 0.40. However, estimated heritability of direct genetic effects from a model considering maternal genetic effect was high (0.60). All results of AIC statistics, the models considering maternal effect was more appropriate than the models considering only additive genetic effect. Genetic correlations of direct additive genetic effect between litter size (TNB, NBA) and teat numbers were low (-0.18 and -0.14, respectively). However, genetic correlations of maternal effect between litter size (TNB, NBA) and teat numbers were a little bit higher than those of direct additive genetic effect (0.08 and 0.16, respectively).

Estimates of Genetic Parameters and Genetic Trends for Production Traits of Inner Mongolian White Cashmere Goat

  • Bai, Junyan;Zhang, Qin;Li, Jinquan;Dao, Er-Ji;Jia, Xiaoping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권1호
    • /
    • pp.13-18
    • /
    • 2006
  • Two different animal models, which differ in whether or not taking maternal genetic effect into account, for estimating genetic parameters of cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter, and fiber length in Inner Mongolia White Cashmere Goat were compared via likelihood ratio test. The results indicate that maternal genetic effect has significant influence on live body weight and cashmere thickness, but no significant influence on the other traits. Using models suitable for each trait, both genetic parameters and trends were analyzed with the MTDFREML program. Heritability estimates from single trait models for cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter and fiber length were found to be 0.30, 0.07, 0.21, 0.29, 0.28 and 0.21, respectively. Genetic correlation estimates from two-trait models between live body weight and all other traits (-0.06~0.07) was negligible, as were those between fiber diameter and all other traits (-0.01~0.03) except cashmere thickness (0.19). Cashmere weight and staple length had moderate to low genetic correlations with other traits (-0.24~0.39 and -0.24~0.34, respectively) except for live body weight and fiber diameter. Cashmere thickness had a strong genetic correlation with fiber length (0.81), and low genetic correlation with other traits (0.19~0.34) except live body weight. Genetic trend analysis suggests that selection for cashmere weight was very effective, which has led to the slow genetic progress of cashmere thickness and fiber length due to their genetic correlations with cashmere weight. The selection for live body weight was not effective, which was consistent with its low inheritability.

Estimation of Genetic Parameters for Daily Milk Yield, Somatic Cell Score, Milk Urea Nitrogen, Blood Glucose and Immunoglobulin in Holsteins

  • Ahn, B.S.;Jeon, B.S.;Kwon, E.G.;Khan, M. Ajmal;Kim, H.S.;Ju, J.C.;Kim, N.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권9호
    • /
    • pp.1252-1256
    • /
    • 2006
  • This study estimated the effects of parity (1-3) and stage of lactation (early, mid and late) on daily milk yield (DMY), somatic cell score (SCS), milk urea nitrogen (MUN), blood glucose, and immunoglobulin G (IgG), their heritabilities and genetic correlations between them in Holsteins (n = 200). Means and standard deviations of DMY, SCS, MUN, blood glucose, and IgG in the experimental herd were $23.35{\pm}7.75kg$, $3.81{\pm}2.00$, $13.99{\pm}5.68mg/dl$, $44.91{\pm}13.12mg/dl$, and $30.36{\pm}6.72mg/ml$, respectively. DMY was the lowest in first parity, and in late lactation. SCS increased with parity; however, it was lowest in mid-lactation. MUN was lowest in first parity, and no difference was noted across stage of lactation. Blood glucose was similar between parities, however the highest blood glucose was observed during mid lactation. IgG level was significantly different between first and second parity; however, stage of lactation did not affect its level. Heritability of DMY was 0.16. Its genetic correlations with SCS and with blood glucose were -0.67 and 0.98, respectively. Heritability of SCS was 0.15. Genetic correlations of SCS with MUN, glucose, and IgG were -0.72, -0.59, and 0.68, respectively. Heritability of MUN was estimated to be 0.39 and had a genetic correlation of -0.35 with IgG. Heritabilities of blood glucose and IgG were 0.21 and 0.33, respectively. This study suggested that MUN, blood glucose and IgG could be considered important traits in future dairy selection programs to improve milk yield and its quality with better animal health and welfare. However, further studies are necessary involving more records to clarify the relationship between metabolic and immunological traits with DMY and its quality.

Genetic (Co)variance Components for Body Weight and Body Measurements in Makooei Sheep

  • Abbasi, Mokhtar-Ali;Ghafouri-Kesbi, Farhad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권6호
    • /
    • pp.739-743
    • /
    • 2011
  • The aim of this paper was to estimate genetic parameters for body weight and five body measurements for an experimental population of Iranian Makooei sheep maintained at the Makooei Sheep Breeding Station at Makoo, Iran. To do this, yearling live weight (YW), and five body measurements, i.e., body length (BL), heart girth (HG), height at withers (HW), height at back (HB) and scrotal circumference (SC), were analyzed in a multi-trait animal model using the DXMUX program of DFREML software package. Heritability estimates were $0.22{\pm}0.08$, $0.11{\pm}0.06$, $0.21{\pm}0.07$, $0.17{\pm}0.06$, $0.17{\pm}0.06$ and $0.32{\pm}0.10$ for YW, BL, HG, HW, HB and SC, respectively. These estimates indicate that selection in Makooei sheep would generate moderate genetic progress in body weight and body measurements. Scrotal circumference, as an indicator of reproductive potential, exhibited the highest heritability. This trait, therefore, could successfully be used to increase productivity of males and, indirectly, female fertility. Genetic correlations between traits studied were all positive and ranged from 0.15 (YW/HB) to 0.99 (HW/HB). Phenotypic correlations were also positive and ranged from moderate (0.32, HW/SC) to high (0.94, HW/HB). Positive genetic and phenotypic correlations indicate that improvement in body measurements both at the genetic and phenotypic levels is expected through selection on body weight and vice versa.