• 제목/요약/키워드: Genes

검색결과 11,836건 처리시간 0.037초

Deletion of adipose triglyceride lipase abolishes blood flow increase after β3-adrenergic stimulation in visceral adipose tissue of mice

  • Lee, Hye-Jin;Jin, Bo-Yeong;Park, Mi-Rae;Seo, Kwan Sik;Jeong, Yong Taek;Choi, Sang-Hyun;Kim, Dong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.355-363
    • /
    • 2021
  • Dynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via β-adrenergic receptors (β-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each β-AR subtype in the regulation of ATBF in mice. We monitored the changes in visceral epididymal ATBF (VAT BF), induced by local infusion of dobutamine, salbutamol, and CL316,243 (a selective β1-, β2-, and β3-AR agonist, respectively) into VAT of lean CD-1 mice and global adipose triglyceride lipase (ATGL) knockout (KO) mice, using laser Doppler flowmetry. Administration of CL316,243, known to promote lipolysis in adipocytes, significantly increased VAT BF of CD-1 mice to a greater extent compared to that of the vehicle, whereas administration of dobutamine or salbutamol did not produce significant differences in VAT BF. The increase in VAT BF induced by β3-AR stimulation disappeared in ATGL KO mice as opposed to their wild-type (WT) littermates, implying a role of ATGL-mediated lipolysis in the regulation of VAT BF. Different vascular reactivities occurred despite no significant differences in vessel density and adiposity between the groups. Additionally, the expression levels of the angiogenesis-related genes were significantly higher in VAT of ATGL KO mice than in that of WT, implicating an association of ATBF responsiveness with angiogenic activity in VAT. Our findings suggest a potential role of β3-AR signaling in the regulation of VAT BF via ATGL-mediated lipolysis in mice.

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh;Kim, Seong Heon;Kim, Jong Hwan;Kim, Seon-Young;Park, Byoung Chul;Han, Sang-Bae;Park, Sung Goo;Kim, Jeong-Hoon;Kim, Sunhong
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.458-467
    • /
    • 2021
  • GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling

  • Kim, Dong Hwi;Yong, Hyo Jeong;Mander, Sunam;Nguyen, Huong Thi;Nguyen, Lan Phuong;Park, Hee-Kyung;Cha, Hyo Kyeong;Kim, Won-Ki;Hwang, Jong-Ik
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.331-341
    • /
    • 2021
  • Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

Effect of 42 amino acid long amyloid-β peptides on Arabidopsis plants

  • Lee, HanGyeol;Kim, Ji Woo;Jeong, Sangyun;An, Jungeun;Kim, Young-Cheon;Ryu, Hojin;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • 제47권4호
    • /
    • pp.283-288
    • /
    • 2020
  • Although the evolution of Arabidopsis thaliana and humans diverged approximately 1.6 billion years ago, recent studies have demonstrated that protein function and cellular processes involved in disease response remain remarkably conserved. Particularly, γ-secretase, a multisubunit protein complex that participates in intramembrane proteolysis (RIP) regulation, is also known to mediate the cleavage of more than 80 substrates including the amyloid precursor protein (APP) and the Notch receptor. Although the genes (PS1/2, APH-1, PEN-2, and NCT) coding for the γ-secretase complex components are present in plant genomes, their function remains largely uncharacterized. Given that the deposition of 42 amino acid long amyloid-β peptides (hAβ42) is thought to be one of the main causes of Alzheimer's disease, we aimed to examine the physiological effects of hAβ42 peptides on plants. Interestingly, we found that Arabidopsis protoplast death increased after 24 h of exposure to 3 or 5 µM hAβ42 peptides. Furthermore, transgenic Arabidopsis plants overexpressing the hAβ42 gene exhibited changes in primary root length and silique phyllotaxy. Taken together, our results demonstrate that hAβ42 peptides, a metazoan protein, significantly affect Arabidopsis protoplast viability and plant morphology.

Assessment of Adipocyte Differentiation and Maturation-related Gene Expression in the Epididymal Fat of Estrogen Receptor α Knockout (ERαKO) Mouse during Postnatal Development Period

  • Cheon, Yong-Pil;Ko, CheMyong;Lee, Ki-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.287-296
    • /
    • 2020
  • The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9

  • Zhang, Songzi;Shin, Juyoun;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • Avian influenza (AIV) outbreaks can induce fatal human pulmonary infections in addition to economic losses to the poultry industry. In this study, we aimed to develop a rapid and sensitive point-of-care AIV test using loop-mediated isothermal amplification (LAMP) technology. We designed three sets of reverse transcription LAMP (RT-LAMP) primers targeting the matrix (M) and hemagglutinin (HA) genes of the H5 and H9 subtypes. RT-LAMP targeting the universal M gene was designed to screen for the presence of AIV and RT-LAMP assays targeting H5-HA and H9-HA were designed to discriminate between the H5 and H9 subtypes. All three RT-LAMP assays showed specific amplification results without nonspecific reactions. In terms of sensitivity, the detection limits of our RT-LAMP assays were 100 to 1,000 RNA copies per reaction, which were 10 times more sensitive than the detection limits of the reference reverse-transcription polymerase chain reaction (RT-PCR) (1,000 to 10,000 RNA copies per reaction). The reaction time of our RT-LAMP assays was less than 30 min, which was approximately four times quicker than that of conventional RT-PCR. Altogether, these assays successfully detected the existence of AIV and discriminated between the H5 or H9 subtypes with higher sensitivity and less time than the conventional RT-PCR assay.

All-trans retinoic acid alters the expression of adipogenic genes during the differentiation of bovine intramuscular and subcutaneous adipocytes

  • Chung, Ki Yong;Kim, Jongkyoo;Johnson, Bradley J.
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1397-1410
    • /
    • 2021
  • The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein β (C/EBPβ), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPβ decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.