• Title/Summary/Keyword: Generator Coupled Engine

Search Result 33, Processing Time 0.023 seconds

Study on Turbopump-Gas Generator Open-Loop Coupled Test (터보펌프-가스발생기 개회로 연계시험 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.563-568
    • /
    • 2010
  • Turbopump-gas generator open-loop coupled tests are performed during the development of a 30tonf-LOx/Kerosene rocket engine. In the turbopump-gas generator open-loop tests, the propellants to gas generator are supplied from the outlets of turbopump, while the gas exhausted from the gas generator is vented out to the atmosphere, instead of being used to turbine driving. This paper presents the objectives, procedure, and results of the open-loop coupled test, in addition to a schematic representation of the test apparatus and the operating conditions for the test facility system and control system. The results of turbopump-gas generator open-loop coupled test confirm chill-down procedure, startup characteristics, nominal operability and smooth shutdown of the open-loop coupled Test Plant in test conditions simulating engine system operation environment.

Optimization and Thrust force Calculation of Linear Generator in Starting Mode for Free-Piston Engine Applications

  • Lee, Hyun-Woo;Eid Ahmad M.;Sugimura Hisayuki;Choi, Kwang-Ju;Nakaoka Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.395-398
    • /
    • 2006
  • this paper provides a novel method to start the linear engine coupled linear generator from dead stop to its final steady state operation. This method depends mainly to use the linear generator mounted on the shaft of the linear engine to provide the required thrust force to move and oscillate the linear engine from bottom to top dead centers. It is a cost effective approach to start the internal linear combustion engine using its coupled tubular permanent magnet linear generator proposed here. This linear generator operates in this case in motoring mode, providing the required thrust force by feeding this linear generator phases with currents by using a three phase PWM inverter controlled by position feedback scheme. In order to provide the desired thrust force with specific value and direction, a position feedback is required to control the free piston engine motion through controlling the inverter switches using PWM control scheme.

  • PDF

Implementation of Constant Power Controlled Starter for A Turbo Generator System (터보 발전기 시스템을 위한 정 출력 제어 방식 시동기 구현)

  • 권정혁;양현섭;노민식;차영범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Turbo generator system need starter for gas turbine engine. Turbo generator has high rate gearbox for reduce rotating speed. Because a conventional generator could not operate same speed of gas turbine engine. But Recently turbo generator system is directly connected a gas turbine engine with a super high-speed generator. In this paper, starter driver are implemented direct coupled turbo generator system, Which is directly connected 100kW, 60,000rpm gas turbine engine and 25kW 60,000rpm super high speed generator.

  • PDF

Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.129-132
    • /
    • 2008
  • For the development of the 30tonf level LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests are performed. To simulate engine operation conditions, combustion chamber was substituted by flow control orifices. In simulated engine system operation environment, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator coupled Test Plant are confirmed. Turbopump and gas generator are confirmed to operate well in simulated engine environment. The control system for regulating power and mixture ratio of Test Plant are also successfully confirmed.

  • PDF

Study on the Characteristics of Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험 특성 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.38-41
    • /
    • 2009
  • For the technology development of LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests using 30tonf main engine components such as turbopump and gas generator except combustion chamber are performed. In the engine system operation environment, simulating combustion chamber by flow control units, the chill-down procedure, startup characteristics, nominal operability and smooth shutdown of turbopump+gas generator closed-loop coupled Test Plant are successfully confirmed. The serviceability of the turbopump and gas generator are evaluated. The feed-back control system for the turbopump rotational speed and gas generator mixture ratio are also verified. The results of closed-loop coupled test will be used as the technology development for the liquid rocket engine.

  • PDF

Turbopump+Gas generator Open-loop coupled test (터보펌프+가스발생기 개회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.125-128
    • /
    • 2008
  • As a interstage of the 30tonf level LOx/kerosene liquid rocket engine development, turbopump-gas generator open-loop coupled tests are performed. Test schematic and test results of open-loop coupled tests are presented. In engine system operation environment simulating combustion chamber by flow control orifice, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator open-loop coupled Test Plant are confirmed The results of open-loop coupled test were used for the preparation on turbopump+gas generator closed-loop test.

  • PDF

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

Design of Turbopump+Gas Generator Coupled Test (터보펌프+가스발생기 연계시험 설계)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheol-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.196-200
    • /
    • 2006
  • This paper describes the current development status of the major subsystems, turbopump and gas generator, for a turbopump-fed liquid oxygen-kerosene rocket engine system. As a secondary stage of the liquid rocket engine development test, turbopump-gas generator powerpack tests are planned. The schematics of the test hardware and the test facility for the TP+GG coupled test are presented. The results of a preliminary analysis for operating regimes of the TP+GG coupled test are also presented.

  • PDF

A Study of Chill-down Process in 30 tonf Turbopump-Gas Generator Coupled Tests (30톤급 터보펌프-가스발생기 연계시험에서 예냉 절차 연구)

  • Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.447-450
    • /
    • 2012
  • An analysis of chill-down process was performed for 30 tonf Turbopump-Gas generator coupled tests. The chill-down process must be fulfilled before liquid rocket engine test using cryogenic propellant. Cavitation, damage and/or combustion instability due to bubble of propellant must be eliminated by chill-down process in a test specimen, especially cryogenic pump. The analysis of test data obtained by 30 tonf TP-GG coupled tests was performed in order to be based on the test process of KSLV-II liquid propellant rocket engine which will be developed. To macroscopically understand the process of chill-down from the viewpoint of test procedure the temperatures of important part and total time of chill-down process were analyzed.

  • PDF

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.