• 제목/요약/키워드: Generation Gap

검색결과 444건 처리시간 0.024초

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

지역 간 인구이동과 지역경제성장의 동태적 특징에 관한 실증 분석 (Analysis on the Dynamic Characteristics of Migration and Regional Economic Growth between Regions)

  • 김현우;이두헌
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.310-321
    • /
    • 2021
  • 지역 간 인구이동요인은 개인의 라이프코스에 기인하여 세대별·연령별로 차이가 존재하므로 지역경제성장이 인구이동에 미치는 영향도 연령별로 다를 수 있다. 이에 본 연구는 지역경제성장의 변화가 지역 간 인구이동에 미치는 영향을 연령별로 구분하여 실증 분석하였다. 분석결과를 요약하자면, 첫째, 연령층과 상관없이 지역의 경제성장률과 일자리 증가율의 상승은 순이동률을 증가시키는 것으로 나타났다. 둘째, 청년층은 중장년층에 비해 지역경제성장률과 일자리 증가율이 순이동률에 미치는 영향이 큰 것으로 나타났다. 셋째, 25-29세 연령층은 개인소득수준, 40-64세 중장년층은 지가변동수준의 지역 간 격차가 순이동률에 영향을 주는 것으로 나타났다. 이와 같은 분석결과를 볼 때, 지역 간 인구이동에서 지역경제성장은 여전히 중요한 요인으로 작용하고 있으며, 특히 청년층에게 영향력이 큰 것을 알 수 있었다.

중소기업을 위한 웹기반 비즈니스 프로세스 관리 시스템 개발 (Development of Web Based Business Process Management System for Small and Medium Sized Enterprise)

  • 서창갑;박영재
    • 한국산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.153-162
    • /
    • 2009
  • 오늘날 경영환경은 기술혁신 등으로 인해 경쟁 압력이 커져 가는 불확실성의 환경하에 놓여 있다. 회사 내부에 수많은 정보들이 다양한 채널로 통해 입수되고 변경되기 때문에 정보를 체계적으로 관리하기 어렵고, 정보의 유지보수 관리에 어려움이 많다. 이와 같이 급변하는 기업환경에 신속히 대응하기 위하여 기업의 업무는 비즈니스 프로세스 중심으로, 기업의 정보시스템은 BPMS(Business Process Management System) 중심으로 구축되어가고 있다. 그러나 현재까지의 BPMS 솔루션들은 대부분 대기업 위주여서 중소기업의 경우에는 이러한 BPMS를 도입하기가 어려운 실정이다. 이에 본 연구에서는 중소기업의 비즈니스 프로세스를 모델링하고 실행, 통제, 분석 할 수 있는 시스템을 개발하여 웹으로 서비스할 수 있도록 하였다. 개발된 시스템은 해당 업무를 자동으로 알려주고 업무별 흐름에 따른 양식과 설명서를 제공한다. 중소기업의 BPM 툴로서 사용할 수 있게 경량화하여 구현하였다.

PEALD를 이용한 HfO2 유전박막의 Al 도핑 효과 연구 (Study of Al Doping Effect on HfO2 Dielectric Thin Film Using PEALD)

  • 오민정;송지나;강슬기;김보중;윤창번
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.125-128
    • /
    • 2023
  • Recently, as the process of the MOS device becomes more detailed, and the degree of integration thereof increases, many problems such as leakage current due to an increase in electron tunneling due to the thickness of SiO2 used as a gate oxide have occurred. In order to overcome the limitation of SiO2, many studies have been conducted on HfO2 that has a thermodynamic stability with silicon during processing, has a higher dielectric constant than SiO2, and has an appropriate band gap. In this study, HfO2, which is attracting attention in various fields, was doped with Al and the change in properties according to its concentration was studied. Al-doped HfO2 thin film was deposited using Plasma Enhanced Atomic Layer Deposition (PEALD), and the structural and electrical characteristics of the fabricated MIM device were evaluated. The results of this study are expected to make an essential cornerstone in the future field of next-generation semiconductor device materials.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터 (p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process)

  • 이승민;장성철;박지민;윤순길;김현석
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

2차원 채널 물질을 활용한 전계효과 트랜지스터의 저항 요소 분석 (Performance Impact Analysis of Resistance Elements in Field-Effect Transistors Utilizing 2D Channel Materials)

  • 홍태영;홍슬기
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.83-87
    • /
    • 2023
  • 전자 및 반도체 기술 분야에서는 Si를 대체할 혁신적인 반도체 소재 연구가 활발하게 진행 중이다. 그러나 대체 소재에 대한 연구는 진행 중이지만 2차원 물질을 채널로 사용하는 트랜지스터의 구성요소, 특히 기생 저항과 RF(고주파) 응용 프로그램과의 관계에 대한 연구는 매우 부족한 편이다. 본 연구는 이러한 부족한 부분을 메우기 위해 다양한 트랜지스터 구조에 중점을 두고 전기적 성능에 미치는 영향을 체계적으로 분석하였다. 연구 결과, Access 저항과 Contact 저항이 반도체 소자 성능 저하의 주요 요인 중 하나로 작용함을 확인하였으며, 특히 고도로 scaling down된 경우 그 영향이 더욱 두드러지는 것을 확인하였다. 고주파 RF 소자에 대한 수요가 계속해서 증가함에 따라 원하는 RF 성능을 달성하기 위한 소자 구조 및 구성 요소를 최적화하기 위한 가이드라인을 수립하는 것은 매우 중요하다. 본 연구는 2차원 물질을 채널로 사용하는 다음 세대 RF 트랜지스터의 설계 및 개발에 도움이 될 수 있는 구조적 가이드라인을 제공함으로써 이 목표에 기여할 수 있다.

Generation of ints14 Knockout Zebrafish using CRISPR/Cas9 for the Study of Development and Disease Mechanisms

  • Ji Hye Jung;Sanghoon Jeon;Heabin Kim;Seung-Hyun Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.205-211
    • /
    • 2023
  • INTS14/VWA9, a component of the integrator complex subunits, plays a pivotal role in regulating the fate of numerous nascent RNAs transcribed by RNA polymerase II, particularly in the biogenesis of small nuclear RNAs and enhancer RNAs. Despite its significance, a comprehensive mutation model for developmental research has been lacking. To address this gap, we aimed to investigate the expression patterns of INTS14 during zebrafish embryonic development. We generated ints14 mutant strains using the CRISPR/Cas9 system. We validated the gRNA activity by co-injecting Cas9 protein and a single guide RNA into fertilized zebrafish eggs, subsequently confirming the presence of a 6- or 9-bp deletion in the ints14 gene. In addition, we examined the two mutant alleles through PCR analysis, T7E1 assay, TA-cloning, and sequencing. For the first time, we used the CRISPR/Cas9 system to create a model in which some sequences of the ints14 gene were removed. This breakthrough opens new avenues for in-depth exploration of the role of ints14 in animal diseases. The mutant strains generated in this study can provide a valuable resource for further investigations into the specific consequences of ints14 gene deletion during zebrafish development. This research establishes a foundation for future studies exploring the molecular mechanisms underlying the functions of ints14, its interactions with other genes or proteins, and its broader implications for biological processes.

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.