• Title/Summary/Keyword: Generation Fuel Cost

Search Result 227, Processing Time 0.024 seconds

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

Fuel Cell as an Alternative Distributed Generation Source under Deregulated Power Systems (규제가 없는 전력계통에서 대체분산전원으로서의 연료전지)

  • Lee, Kwang-Y.;Kim, Se-Ho;Kim, Eel-Hwan;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.561-569
    • /
    • 2006
  • Because of the trend of deregulation, power industry is going through an unprecedented transformation in North America and Europe, and there are a host of acquisitions and mergers by the private sector to position themselves to take advantage of new business opportunities. Deregulation has accelerated the development of smaller generators and fuel cells will gradually become more attractive to mainstream electricity users as they improve in capability and decrease in cost. Fuel Cell technology is surveyed and the potential of using fuel cell as a distributed generation source is presented. This paper recommends the fuel cell power plants as alternative energy sources for distributed generation in Jeju Island, Korea. This will help in increasing fuel efficiency, at least double the current thermal plants', increasing the reliability of power supply, reducing the dependency on the HVDC link, providing quality power to the growing infrastructure, and maintaining clean air in meeting the free-trade international island.

Economic Dispatch Algorithm as Combinatorial Optimization Problems (조합최적화문제로 접근한 경제급전 알고리즘 개발)

  • Min, Kyung-Il;Lee, Su-Won;Choi, In-Kyu;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1485-1495
    • /
    • 2009
  • This paper presents a novel approach to economic dispatch (ED) with nonconvex fuel cost function as combinatorial optimization problems (COP) while most of the conventional researches have been developed as function optimization problems (FOP). One nonconvex fuel cost function can be divided into several convex fuel cost functions, and each convex function can be regarded as a generation type (G-type). In that case, ED with nonconvex fuel cost function can be considered as COP finding the best case among all feasible combinations of G-types. In this paper, a genetic algorithm is applied to solve the COP, and the ${\lambda}-P$ function method is used to calculate ED for the fitness function of GA. The ${\lambda}-P$ function method is reviewed briefly and the GA procedure for COP is explained in detail. This paper deals with two kinds of ED problems, namely ED with multiple fuel units (EDMF) and ED with prohibited operating zones (EDPOZ). The proposed method is tested for all the ED problems, and the test results show an improvement in solution cost compared to the results obtained from conventional algorithms.

An Economic Dispatch Algorithm as Combinatorial Optimization Problems

  • Min, Kyung-Il;Lee, Su-Won;Moon, Young-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.468-476
    • /
    • 2008
  • This paper presents a novel approach to economic dispatch (ED) with nonconvex fuel cost function as combinatorial optimization problems (COP) while most of the conventional researches have been developed as function optimization problems (FOP). One nonconvex fuel cost function can be divided into several convex fuel cost functions, and each convex function can be regarded as a generation type (G-type). In that case, ED with nonconvex fuel cost function can be considered as COP finding the best case among all feasible combinations of G-types. In this paper, a genetic algorithm is applied to solve the COP, and the $\lambda$-P table method is used to calculate ED for the fitness function of GA. The $\lambda$-P table method is reviewed briefly and the GA procedure for COP is explained in detail. This paper deals with three kinds of ED problems, namely ED considering valve-point effects (EDVP), ED with multiple fuel units (EDMF), and ED with prohibited operating zones (EDPOZ). The proposed method is tested for all three ED problems, and the test results show an improvement in solution cost compared to the results obtained from conventional algorithms.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.

The Next Generation Photovoltaic Technology for Cost-Effective and High Efficiency (태양에너지를 이용한 차세대 저가·고효율 태양전지 기술)

  • Jeong, Chaehwan
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.4-10
    • /
    • 2016
  • Photovoltaic technology has been intensively developed as one of the most powerful renewable energies, replacing a fossil fuel such as coal and petroleum. Every country in the world has emphasized on development of photovoltaic technology and our government has invested heavily in low cost and high efficiency. Korea institute of industrial technology (KITECH) has lastingly constructed PV R&D infra for development of cost-effective and high efficiency solar cells as well as support of commercialization in PV's small and medium enterprises. In this paper, we introduce the next generation PV R&D and infra in KITECH.

Development of algorism to optimal operation of Power Generation considering Regional Regulation of CO2 Emission (지역별 CO2 배출량규제를 고려한 발전소 최적운전 알고리즘의 개발)

  • Kim, Yong-Ha;Kim, Young-Gil;Lee, Pyong-Ho;Jo, Hyun-Mi;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1936-1941
    • /
    • 2010
  • This purpose of this paper is to propose a methodology for optimal generating operation in power system to minimize the cost of generation subject to not only system constraints but also regional $CO_2$ emission constraints. To solve this ELD problem calculated range limit on minimum and maximum power outputs by regional Equal Generator how each regional capacity is connected into one and expressed Equal Fuel Cost Function considering regional $CO_2$ emission constraints. Accordingly, being modified regional load, new power outputs considering regional $CO_2$ emission constraints were calculated by ELD. The proposed model for evaluating availability is tested on IEEE RTS(Reliability Test System)-24 in detail.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Review on Studies for External Cost of Nuclear Power Generation (원자력발전 외부비용 연구들에 대한 검토)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.271-282
    • /
    • 2015
  • External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.