• 제목/요약/키워드: Generation Fuel Cost

검색결과 227건 처리시간 0.026초

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

쿼드콥터 소모 에너지를 비용함수로 하는 3차원 경로계획 (Three-dimensional Energy-Aware Path Planning for Quadcopter UAV)

  • 김효원;정진석;강범수
    • 항공우주시스템공학회지
    • /
    • 제14권5호
    • /
    • pp.9-17
    • /
    • 2020
  • 무인항공기를 비롯한 다수의 이동로봇은 제한된 연료로 임무를 수행하므로 장시간 운용시 효율을 극대화 하기위해 에너지를 고려한 경로계획이 요구된다. 본 연구에서는 3차원 환경에서 쿼드콥터 무인항공기 비행에 따른 소모 에너지를 근사화하여 기존 D Lite 알고리즘의 비용함수에 적용하였다. 산업현장과 유사한 3차원 환경에서 시뮬레이션을 수행한 결과 에너지를 비용함수로 하고 휴리스틱 계산을 3 단순화 하였을 때 경로 생성 효율이 높았으며, 최단경로와 약 3.2% 이내의 차이를 갖는 경로를 최대 19.3배 빠르게 도출했다.

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

한국의 바이오디젤 원료 잠재량 분석 연구 (Study on Potential Feedstock Amount Analysis of Biodiesel in Korea)

  • 민경일;박천규;김재곤;나병기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.447-461
    • /
    • 2016
  • Recently, the Renewable Fuel Standard(RFS) has been commenced from July 31, 2015 in the New and Renewable Energy Act for expanding the supply of renewable energy and reduction of national GHG target in Korea. The biodiesel is only a means of implementation for the RFS, therefore the biodiesel supply expansion is important for fulfilling the RFS obligation policy. The major key points of the biodiesl supply are expanding domestic feedstocks due to the over 60% dependence on foreign feedstock and reducing the price of feedstock because of the over 70% occupation of feed stock price in the biodiesl production cost. Therefore, we estimated actual amount of potential feedstocks which are possible to use for biodiesl production in Korea and investigated technical and political improvements for expanding biodiesl. For estimating a potential feedstocks, first selected the potential biodiesl feedstocks by investigating the status of global biodiesl feedstocks and then analyzed the possible potential amount of each feedstock by surveying the generation situations, the distribution structures and the technical level.

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • 제20권3호
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

전륜 서스펜션 성능향상을 위한 하이드로포밍 샤시 부품의 설계 최적화 (Design Optimization of Hydroforming Chassis Part for improving Front Suspension Performance)

  • 문만빈;김윤규;김효섭;진경수;김동학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2009
  • Recently, automotive companies have invested in vehicle weight reduction and clean car development because of oil price rises and environmental problems. In particular, USA car makers have developed the vehicle spending 1 liter per 34km complying with PNGV(Partnership for a new generation of vehicle) and Europe car makers have developed the vehicle spending 3 liters per 100km. The USA government announced "The green car policy" in order to boost production of more fuel effective cars in 2009. According to the policy, it will be restricted to sell the car which spends more than 1 liter per 14.9km by 2020. To satisfy the current situations on automotive market, hydroforming technology has widely adapted vehicle structures such as engine cradle, chassis frame, A pillar, radiator support, etc. However, automotive companies have to consider formability and performance to improve and maximize the benefit from this technology in advance of detail design. The paper deals with one of the vehicle weight reduction methods using tube hydroforming technology and platform commonality in front suspension. FEA simulation is also introduced to evaluate hydro-formability and NVH performance at the beginning of design stage which is the best way to reduce the failure cost.

  • PDF

Management of Spent Ion-Exchange Resins From Nuclear Power Plant by Blending Method

  • Kamaruzaman, Nursaidatul Syafadillah;Kessel, David S.;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제16권1호
    • /
    • pp.65-82
    • /
    • 2018
  • With the significant increase in spent ion-exchange resin generation, to meet the requirements of Waste Acceptance Criteria (WAC) of the Wolsong disposal facility in Korea, blending is considered as a method for enhancing disposal options for intermediate level waste from nuclear reactors. A mass balance formula approach was used to enable blending process with an appropriate mixing ratio. As a result, it is estimated around 44.3% of high activity spent resins can be blended with the overall volume of low activity spent resins at a 1:7.18 conservative blending ratio. In contrast, the reduction of high activity spent resins is considered a positive solution in reducing the amount of spent resins stored. In an economic study, the blending process has been proven to lower the disposal cost by 10% compared to current APR1400 treatment. Prior to commencing use of this blending method in Korea, coordinated discussion, and safety and health assessment should be undertaken to investigate the feasibility of fitting this blending method to national policy as a means of waste predisposal processing and management in the future.

Development of Efficient Operational Mode for Wind-Diesel Hybrid System

  • Asghar, Furqan;Kim, Se-Yoon;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.554-561
    • /
    • 2014
  • Hybrid wind Diesel stand-alone power systems are considered economically viable and effective to create balance between production and load demand in remote areas where the wind speed is considerable for electric generation, and also, electric energy is not easily available from the grid. In Wind diesel hybrid system, the wind energy system is the main constitute and diesel system forms the back up. This type of hybrid power system saves fuel cost, improves power capacity to meet the increasing demand and maintains the continuity of supply in the system. Problem we face in this system is that even after producing enough power through wind turbine system, considerable portion of this power needs to be dumped due to short term oversupply of power and to maintain the frequency within close tolerances. As a result remaining portion of total energy supplied comes from the diesel generator to overcome the temporal energy shortage. This scenario decreases the overall efficiency of hybrid power system. In this study, efficient Simulink modeling for wind-diesel hybrid system is proposed and some simulations study is carried out to verify the feasibility of the proposed scheme.

병렬유전알고리즘을 응용한 대규모 전력계통의 최적 부하배분 (Optimal Economic Load Dispatch using Parallel Genetic Algorithms in Large Scale Power Systems)

  • 김태균;김규호;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.388-394
    • /
    • 1999
  • This paper is concerned with an application of Parallel Genetic Algorithms(PGA) to optimal econmic load dispatch(ELD) in power systems. The ELD problem is to minimize the total generation fuel cost of power outputs for all generating units while satisfying load balancing constraints. Genetic Algorithms(GA) is a good candidate for effective parallelization because of their inherent principle of evolving in parallel a population of individuals. Each individual of a population evaluates the fitness function without data exchanges between individuals. In application of the parallel processing to GA, it is possible to use Single Instruction stream, Multiple Data stream(SIMD), a kind of parallel system. The architecture of SIMD system need not data communications between processors assigned. The proposed ELD problem with C code is implemented by SIMSCRIPT language for parallel processing which is a powerfrul, free-from and versatile computer simulation programming language. The proposed algorithms has been tested for 38 units system and has been compared with Sequential Quadratic programming(SQP).

  • PDF

고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터 (A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics)

  • 트란 만 투안;사기르 아민;최우진
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.