• 제목/요약/키워드: Generate AI Video

검색결과 15건 처리시간 0.02초

Analysis of the possibility of utilizing customized video production using generative AI

  • Hyun Kyung Seo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권11호
    • /
    • pp.127-136
    • /
    • 2024
  • 생성형 AI 기술이 발전하면서 영상 제작의 패러다임이 바뀌고 있다. 초기 낮은 품질, 일관성과 연속성의 어려움으로 인해 실제 영상의 장면으로 활용되지 못했던 단계를 지나, 최근 생성형 AI로 제작한 다양한 영상물이 영상 산업에서 활용되고 있다. 본 논문은 이러한 변화를 바탕으로 사용자 맞춤 생성형 AI의 가능성을 확인한다. 영상 산업에서 생성형 AI의 기술 발전의 방향성을 살피고, 광고, 영화, 애니메이션 분야에서의 최근 사례들을 분석하며 생성형 AI 활용도가 높아지는 원인이 높은 품질의 결과물에만 있는 것이 아니라, 콘텐츠가 가지는 본질적 목적을 수행하고 있기 때문이라는 것을 밝힌다. 이러한 과정을 통해 생성형 AI가 영상 산업에 가져올 가능성을 예측한다.

인공지능 기반 영상 콘텐츠 생성 기술 동향 (Artificial Intelligence-Based Video Content Generation)

  • 손정우;한민호;김선중
    • 전자통신동향분석
    • /
    • 제34권3호
    • /
    • pp.34-42
    • /
    • 2019
  • This study introduces artificial intelligence (AI) techniques for video generation. For an effective illustration, techniques for video generation are classified as either semi-automatic or automatic. First, we discuss some recent achievements in semi-automatic video generation, and explain which types of AI techniques can be applied to produce films and improve film quality. Additionally, we provide an example of video content that has been generated by using AI techniques. Then, two automatic video-generation techniques are introduced with technical details. As there is currently no feasible automatic video-generation technique that can generate commercial videos, in this study, we explain their technical details, and suggest the future direction for researchers. Finally, we discuss several considerations for more practical automatic video-generation techniques.

Enhancing Video Storyboarding with Artificial Intelligence: An Integrated Approach Using ChatGPT and Midjourney within AiSAC

  • Sukchang Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.253-259
    • /
    • 2023
  • The increasing incorporation of AI in video storyboard creation has been observed recently. Traditionally, the production of storyboards requires significant time, cost, and specialized expertise. However, the integration of AI can amplify the efficiency of storyboard creation and enhance storytelling. In Korea, AiSAC stands at the forefront of AI-driven storyboard platforms, boasting the capability to generate realistic images built on open datasets foundations. Yet, a notable limitation is the difficulty in intricately conveying a director's vision within the storyboard. To address this challenge, we proposed the application of image generation features from ChatGPT and Midjourney to AiSAC. Through this research, we aimed to enhance the efficiency of storyboard production and refined the intricacy of expression, thereby facilitating advancements in the video production process.

일반적인 비디오 게임의 AI 에이전트 생성을 위한 개선된 MCTS 알고리즘 (Enhanced MCTS Algorithm for Generating AI Agents in General Video Games)

  • 오평;김지민;김선정;홍석민
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제25권4호
    • /
    • pp.23-36
    • /
    • 2016
  • Purpose Recently, many researchers have paid much attention to the Artificial Intelligence fields of GVGP, PCG. The paper suggests that the improved MCTS algorithm to apply for the framework can generate better AI agent. Design/methodology/approach As noted, the MCTS generate magnificent performance without an advanced training and in turn, fit applying to the field of GVGP which does not need prior knowledge. The improved and modified MCTS shows that the survival rate is increased interestingly and the search can be done in a significant way. The study was done with 2 different sets. Findings The results showed that the 10 training set which was not given any prior knowledge and the other training set which played a role as validation set generated better performance than the existed MCTS algorithm. Besed upon the results, the further study was suggested.

A Feasibility Study on RUNWAY GEN-2 for Generating Realistic Style Images

  • Yifan Cui;Xinyi Shan;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.99-105
    • /
    • 2024
  • Runway released an updated version, Gen-2, in March 2023, which introduced new features that are different from Gen-1: it can convert text and images into videos, or convert text and images together into video images based on text instructions. This update will be officially open to the public in June 2023, so more people can enjoy and use their creativity. With this new feature, users can easily transform text and images into impressive video creations. However, as with all new technologies, comes the instability of AI, which also affects the results generated by Runway. This article verifies the feasibility of using Runway to generate the desired video from several aspects through personal practice. In practice, I discovered Runway generation problems and propose improvement methods to find ways to improve the accuracy of Runway generation. And found that although the instability of AI is a factor that needs attention, through careful adjustment and testing, users can still make full use of this feature and create stunning video works. This update marks the beginning of a more innovative and diverse future for the digital creative field.

특성맵 차분을 활용한 커널 기반 비디오 프레임 보간 기법 (Kernel-Based Video Frame Interpolation Techniques Using Feature Map Differencing)

  • 서동혁;고민성;이승학;박종혁
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 2024
  • 비디오 프레임 보간(Video Frame Interpolation)은 움직임의 연속성을 증가시켜 영상을 부드럽게 재생할 수 있어 영상, 미디어 분야에서 사용되는 중요한 기술이다. 딥러닝 기반 비디오 프레임 보간 연구에서 널리 사용되는 방법 중 하나인 커널 기반 방법(Kernel Based Method)의 경우, 지역적인 변화를 잘 포착하지만 전체적인 변화를 처리하는 데 한계가 있었다. 이에 본 논문에서는 주요 변화 포착에 집중하기 위한 특성맵 차분, Two Direction을 적용한 새로운 U-Net 구조를 통해 파라미터 수를 줄이면서 중간 프레임을 보다 정확하게 생성하고자 한다. 실험 결과 제안한 구조가 기존보다 Vimeo, Middle-burry 등의 일반적인 데이터셋과 새로운 YouTube 데이터셋에서 기존 모델보다 약 61% 더 적은 파라미터로 PSNR 수치가 최대 0.3 우수한 성능을 달성하였다. 본 논문에서 사용한 코드는 https://github.com/Go-MinSeong/SF-AdaCoF에서 확인 가능하다.

GENERATION OF FUTURE MAGNETOGRAMS FROM PREVIOUS SDO/HMI DATA USING DEEP LEARNING

  • Jeon, Seonggyeong;Moon, Yong-Jae;Park, Eunsu;Shin, Kyungin;Kim, Taeyoung
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.82.3-82.3
    • /
    • 2019
  • In this study, we generate future full disk magnetograms in 12, 24, 36 and 48 hours advance from SDO/HMI images using deep learning. To perform this generation, we apply the convolutional generative adversarial network (cGAN) algorithm to a series of SDO/HMI magnetograms. We use SDO/HMI data from 2011 to 2016 for training four models. The models make AI-generated images for 2017 HMI data and compare them with the actual HMI magnetograms for evaluation. The AI-generated images by each model are very similar to the actual images. The average correlation coefficient between the two images for about 600 data sets are about 0.85 for four models. We are examining hundreds of active regions for more detail comparison. In the future we will use pix2pix HD and video2video translation networks for image prediction.

  • PDF

Automatic Poster Generation System Using Protagonist Face Analysis

  • Yeonhwi You;Sungjung Yong;Hyogyeong Park;Seoyoung Lee;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.287-293
    • /
    • 2023
  • With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.

Automatic Generation of Video Metadata for the Super-personalized Recommendation of Media

  • Yong, Sung Jung;Park, Hyo Gyeong;You, Yeon Hwi;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.288-294
    • /
    • 2022
  • The media content market has been growing, as various types of content are being mass-produced owing to the recent proliferation of the Internet and digital media. In addition, platforms that provide personalized services for content consumption are emerging and competing with each other to recommend personalized content. Existing platforms use a method in which a user directly inputs video metadata. Consequently, significant amounts of time and cost are consumed in processing large amounts of data. In this study, keyframes and audio spectra based on the YCbCr color model of a movie trailer were extracted for the automatic generation of metadata. The extracted audio spectra and image keyframes were used as learning data for genre recognition in deep learning. Deep learning was implemented to determine genres among the video metadata, and suggestions for utilization were proposed. A system that can automatically generate metadata established through the results of this study will be helpful for studying recommendation systems for media super-personalization.

딥러닝 스타일 전이 기반의 무대 탐방 콘텐츠 생성 기법 (Generation of Stage Tour Contents with Deep Learning Style Transfer)

  • 김동민;김현식;봉대현;최종윤;정진우
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1403-1410
    • /
    • 2020
  • 최근, 비대면 경험 및 서비스에 관한 관심이 증가하면서 스마트폰이나 태블릿과 같은 모바일 기기를 이용하여 손쉽게 이용할 수 있는 웹 동영상 콘텐츠에 대한 수요가 급격히 증가하고 있다. 이와 같은 요구사항에 대응하기 위하여, 본 논문에서는 애니메이션이나 영화에 등장하는 명소를 방문하는 무대 탐방 경험을 제공할 수 있는 영상 콘텐츠를 보다 효율적으로 제작하기 위한 기법을 제안한다. 이를 위하여, Google Maps와 Google Street View API를 이용하여 무대탐방 지역에 해당하는 이미지를 수집하여 이미지 데이터셋을 구축하였다. 그 후, 딥러닝 기반의 style transfer 기술을 접목시켜 애니메이션의 독특한 화풍을 실사 이미지에 적용한 후 동영상화하기 위한 방법을 제시하였다. 마지막으로, 다양한 실험을 통해 제안하는 기법을 이용하여 보다 재미있고 흥미로운 형태의 무대탐방 영상 콘텐츠를 생성할 수 있음을 보였다.