• Title/Summary/Keyword: Generalized addictive model

Search Result 4, Processing Time 0.015 seconds

Air Pollution and Daily Mortality in Busan using a Time Series Analysis (시계열자료를 이용한 대기오염과 일별 사망수의 관련성 분석)

  • 서화숙;정효준;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1061-1068
    • /
    • 2002
  • To identify possible associations with concentrations of ambient air pollutants and daily mortality in Busan, this study assessed the effects of air pollution for the time period 1999-2000. Poisson regression analysis by Generalized Additive Model were conducted considering trend, season, meteorology, and day-of-the-week as confounders in a nonparametric approach. Busan had a 10% increase in mortality in persons aged 65 and older(95% Cl : 1.01-1.10) in association with IQR in $NO_2$(lagged 2 days). An increase of $NO_2$(lagged 2days) was associated with a 4% increase in respiratory mortality(Cl : 1.02-1.11) and CO(lagged 1 day) showed a 3% increase(Cl : 1.00-1.07).

A Study on Wildlife Habitat Suitability Modeling for Goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park (설악산 산양을 대상으로 한 야생동물 서식지 적합성 모형에 관한 연구)

  • Seo, Chang Wan;Choi, Tae Young;Choi, Yun Soo;Kim, Dong Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.28-38
    • /
    • 2008
  • The purpose of this study are to compare existing presence-absence predictive models and to predict suitable habitat for Goral (Nemorhaedus caudatus raddeanus) that is an endangered and protected species in Seoraksan national park using the best model among existing predictive models. The methods of this study are as follows. First, 375 location data and 9 environmental data layers were implemented to build a model. Secondly, 4 existing presence-absence models : Generalized Linear Model (GLM), Generalized Addictive Model (GAM), Classification and Regression Tree (CART), and Artificial Neural Network (ANN) were tested to predict the Goal habitat. Thirdly, ROC (Receiver Operating Characteristic) and Kappa statistics were used to calculate a model performance. Lastly, we verified models and created habitat suitability maps. The ROC AUC (Area Under the Curve) and Kappa values were 0.697/0.266 (GLM), 0.729/0.313 (GAM), 0.776/0.453 (CART), and 0.858/0.559 (ANN). Therefore, ANN was selected as the best model among 4 models. The models showed that elevation, slope, and distance to stream were the significant factors for Goal habitat. The ratio of predicted area of ANN using a threshold was 31.29%, but the area decreased when human effect was considered. We need to investigate the difference of various models to build a suitable wildlife habitat model under a given condition.

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

Impact of Weather on Prevalence of Febrile Seizures in Children (소아의 열성경련에 날씨가 미치는 영향)

  • Woo, Jung Hee;Oh, Seok Bin;Yim, Chung Hyuk;Byeon, Jung Hye;Eun, Baik-Lin
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • Purpose: Febrile seizure (FS) is the most common type of seizure in children between 6 months to 5 years of age. A family history of febrile seizures can increase the risk a child will have a FS. Yet, prevalence of FS regarding external environment has not been clearly proved. This study attempts to determine the association between prevalence of FS and weather. Methods: This study included medical records from the Korea National Health Insurance Review and Assessment Service. Data were collected from 29,240 children, born after 2004, diagnosed with FS who were admitted to one of the hospitals in Seoul, Korea, between January 2009 and December 2013. During the corresponding time period, data from the Korea Meteorological Administration on daily monitoring of four meteorological factors (sea-level pressure, amount of precipitation, humidity and temperature) were collected. The relationships of FS prevalence and each meteorological factor will be designed using Poisson generalized additive model (GAM). Also, the contributory effect of viral infections on FS prevalence and weather will be discussed. Results: The amount of precipitation was divided into two groups for comparison: one with less than 5 mm and the other with equal to or more than 5 mm. As a result of Poisson GAM, higher prevalence of FS showed a correlation with smaller amount of precipitation. Smoothing function was used to classify the relationships between three variables (sea-level pressure, humidity, and temperature) and prevalence of FS. FS prevalence was correlated with lower sea-level pressure and lower humidity. FS prevalence was high in two temperature ranges (-7 to $-1^{\circ}C$ and $18-21^{\circ}C$). Conclusion: Low sea-level pressure, small amount of precipitation, and low relative air humidity may increase FS prevalence risk.