• Title/Summary/Keyword: Generalized Lorenz curve

Search Result 4, Processing Time 0.017 seconds

Goodness-of-Fit Test for the Normality based on the Generalized Lorenz Curve

  • Cho, Youngseuk;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • Testing normality is very important because the most common assumption is normality in statistical analysis. We propose a new plot and test statistic to goodness-of-fit test for normality based on the generalized Lorenz curve. We compare the new plot with the Q-Q plot. We also compare the new test statistic with the Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM), Anderson-Darling (AD), Shapiro-Francia (SF), and Shapiro-Wilks (W) test statistic in terms of the power of the test through by Monte Carlo method. As a result, new plot is clearly classified normality and non-normality than Q-Q plot; in addition, the new test statistic is more powerful than the other test statistics for asymmetrical distribution. We check the proposed test statistic and plot using Hodgkin's disease data.

Goodness-of-fit tests based on generalized Lorenz curve for progressively Type II censored data from a location-scale distributions

  • Lee, Wonhee;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.191-203
    • /
    • 2019
  • The problem of examining how well an assumed distribution fits the data of a sample is of significant and must be examined prior to any inferential process. The observed failure time data of items are often not wholly available in reliability and life-testing studies. Lowering the expense and period associated with tests is important in statistical tests with censored data. Goodness-of-fit tests for perfect data can no longer be used when the observed failure time data are progressive Type II censored (PC) data. Therefore, we propose goodness-of-fit test statistics and a graphical method based on generalized Lorenz curve for PC data from a location-scale distribution. The power of the proposed tests is then assessed through Monte Carlo simulations. Finally, we analyzed two real data set for illustrative purposes.

Goodness-of-fit test for the gumbel distribution based on the generalized Lorenz curve (일반화된 로렌츠 곡선을 기반으로 한 Gumbel 분포의 적합도 검정)

  • Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.733-742
    • /
    • 2017
  • There are many areas of applications where Gumbel distribution are employed such as environmental sciences, system reliability and hydrology. The goodness-of-fit test for Gumbel distribution is very important in environmental sciences, system reliability and hydrology data analysis. Therefore, we propose the two test statistics to test goodness-of-fit for the Gumbel distribution based on the generalized Lorenz curve. We compare the new test statistic with the Anderson - Darling test, Cramer - vonMises test, and modified Anderson - Darling test in terms of the power of the test through by Monte Carlo method. As a result, the new test statistics are more powerful than the other test statistics. Also, we propose new graphic method to goodness-of-fit test for the Gumbel distribution based on the generalized Lorenz curve.

Factors Impacting on Income Inequality in Vietnam: GMM Model Estimation

  • NGUYEN, Hiep Quang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.635-641
    • /
    • 2021
  • This article analyzes the factors affecting income inequality in Vietnam, with data from 63 provinces and cities collected from the Vietnam Household Living Standards Survey of the General Statistics Office of Vietnam from 2010 to 2018. The article will firstly build a research model to identify factors affecting income inequality. Then, it uses the Generalized Method of Moments (GMM) method to evaluate the effect of factors on income inequality in Vietnam. The empirical estimate result shows that, in the period from 2010 to 2018, the factors such as the proportion of the working employees, income per capita, and inflation have positive effects on the Gini coefficient. That is, when these factors increase, there will be negative effects on improving income inequality in Vietnam. Conversely, when the factors such as the proportion of the literate adults, the proportion of the urban population, and population density increase they will have a positive impact on improving income inequality in Vietnam during this period. The estimated coefficients satisfied the sign expectation except the proportion of the literate adults. It means that, in Vietnam, the increase and more equilibrium in educational attainment balance the distribution of income and bring an improvement in income inequality.