• Title/Summary/Keyword: Generalized Dirichlet-multinomial regression

Search Result 2, Processing Time 0.021 seconds

Relation Between News Topics and Variations in Pharmaceutical Indices During COVID-19 Using a Generalized Dirichlet-Multinomial Regression (g-DMR) Model

  • Kim, Jang Hyun;Park, Min Hyung;Kim, Yerin;Nan, Dongyan;Travieso, Fernando
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1630-1648
    • /
    • 2021
  • Owing to the unprecedented COVID-19 pandemic, the pharmaceutical industry has attracted considerable attention, spurred by the widespread expectation of vaccine development. In this study, we collect relevant topics from news articles related to COVID-19 and explore their links with two South Korean pharmaceutical indices, the Drug and Medicine index of the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) Pharmaceutical index. We use generalized Dirichlet-multinomial regression (g-DMR) to reveal the dynamic topic distributions over metadata of index values. The results of our analysis, obtained using g-DMR, reveal that a greater focus on specific news topics has a significant relationship with fluctuations in the indices. We also provide practical and theoretical implications based on this analysis.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.