• 제목/요약/키워드: General circulation models

검색결과 74건 처리시간 0.028초

기후변화에 따른 대구지역 지하배수 전망 (Future subsurface drainage in the light of climate change in Daegu, South Korea)

  • 은코모제피 템바;정상옥
    • Current Research on Agriculture and Life Sciences
    • /
    • 제30권2호
    • /
    • pp.97-104
    • /
    • 2012
  • Over the last century, drainage systems have become an integral component of agriculture. Climate observations and experiments using General circulation models suggest an intensification of the hydrologic cycle due to climate change. This study presents hydrologic simulations assessing the potential impact of climate change on subsurface drainage in Daegu, Republic of Korea. Historical and Long Ashton Research Station weather generator perturbed future climate data from 15 general circulation models for a field in Daegu were ran into a water management simulation model, DRAINMOD. The trends and variability in rainfall and Soil Excess Water ($SEW_{30}$) were assessed from 1960 to 2100. Rainfall amount and intensity were predicted to increase in the future. The predicted annual subsurface drainage flow varied from -35 to 40 % of the baseline value while the $SEW_{30}$ varied from -50 to 100%. The expected increases in subsurface drainage outflow require that more attention be given to soil and water conservation practices.

  • PDF

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

기후변화에 따른 도당천 유역 미래 물순환율 평가 (Assessment of Future Water Circulation Rate in Dodang Watershed under Climate Change)

  • 곽지혜;황순호;전상민;김석현;최순군;강문성
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.99-110
    • /
    • 2020
  • The objective of this study is to analyze the trend of changes in the water circulation rates under climate change by adopting the concept of WCR defined by the Ministry of Environment. With the need for sound water circulation recovery, the MOE proposed the idea of WCR as (1-direct flow/precipitation). The guideline for calculating WCR suggests the SCS method, which is only suitable for short term rainfall events. However, climate change, which affects WCR significantly, is a global phenomenon and happens gradually over a long period. Therefore, long-term trends in WCRs should also be considered when analyzing changes in WCR due to climate change. RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios were used to simulate future runoff. SWAT (Soil and Water Assessment Tool) was run under the future daily data from GCMs (General Circulation Models) after the calibration. In 2085s, monthly WCR decreased by 4.2-9.9% and 3.3-8.7% in April and October. However, the WCR in the winter increased as the precipitation during the winter decreased compared to the baseline. In the aspect of yearly WCR, the value showed a decrease in most GCMs in the mid-long future. In particular, in the case of the RCP 8.5 scenario, the WCR reduced 2-3 times rapidly than the RCP 4.5 scenario. The WCR of 2055s did not significantly differ from the 2025s, but the value declined by 0.6-2.8% at 2085s.

우리나라 기후 재현성을 중심으로 한 GCMs 평가 (GCMs Evaluation Focused on Korean Climate Reproducibility)

  • 최대규;이진희;조덕준;김상단
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.482-490
    • /
    • 2010
  • In this study 17 GCMs' simulations of late 20th century climate in Korea are examined. A regionally averaged time series formed by averaging the temperature and precipitation values at all the Korean grid points. In order to compare general circulation models with observations, observed spatially averaged temperature and precipitation is calculated using 24 stations for 1971 to 2000. The annual mean difference between models and observed data are compared. For temperature, most models have a slight cold bias. The models with least bias in annual average temperature are NIES(MIROC3.2 hires), GISS(AOM) and INGV(SXG2005). For precipitation, almost all models have a dry bias, and for some the bias exceeds 50%. Models with lowest bias are NIES(MIROC3.2 hires), CCCma(CGCM3-T47) and MPI-M(ECHAM5-OM). The models' simulated seasonal cycles show that for temperature, CSIRO(Mk3.0) has the best followed by CCCma(CGCM3-T47) and CCCma(CGCM3-T63), and for precipitation, NIES(MIROC3.2 hires) has the best followed by CSIRO(Mk3.0) and CNRM(CM3). In the assessment using Taylor diagram, CCCma(CGCM3-T47) ranks the best for temperature, and NIES(MIROC3.2 hires) ranks the best for precipitation.

HadGEM2-AO의 북태평양 중층수 모의 성능 평가 (Evaluation of North Pacific Intermediate Water Simulated by HadGEM2-AO)

  • 민홍식;임보영
    • Ocean and Polar Research
    • /
    • 제37권4호
    • /
    • pp.265-278
    • /
    • 2015
  • We analyzed the North Pacific Intermediate Water (NPIW) that was simulated in 25 coupled general circulation models (CGCMs) using historical and Representative Concentration Pathway 4.5 (RCP4.5) scenario experiments of Coupled Model Intercomparison Project Phase 5 (CMIP5), focusing on the evaluation of the performance of HadGEM2-AO. A large inter-model diversity in salinity, density, and depth of the NPIW exists even though the multi-model ensemble mean (MME) is comparable to observations. It was found that the depth of the NPIW tends to be deeper in the models in which the NPIW is relatively saltier. HadGEM2-AO simulates the lightest NPIW having the lowest salinity at shallower depth, compared with other CGCMs. Future projections of the NPIW show that the temperature of the NPIW increases, but the density decreases in all CMIP5 models. It was shown that the salinity of the NPIW decreases in most models and the decrease tends to be larger in models simulating the lighter NPIW. The HadGEM2-AO projects moderate changes in the temperature and density of the NPIW out of the CMIP5 models.

다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역 (Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed)

  • 송영훈;정은성
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.1011-1023
    • /
    • 2019
  • 도시화가 급속도로 진행되면 불투수 면적 비율이 증가하여 도시 지역의 재해위험도가 증가한다. 또한 전 지구적 기온 상승으로 인하여 강수량이 급격하게 변화하고 있으므로, 불투수 면적이 증가한 도시 지역들은 전보다 수문학적 재해에 더 노출되어 있다. 위와 같은 문제점을 해결하기 위해 저영향개발(Low Impact Development, LID) 시설이 폭넓게 설치되고 있다. 본 연구에서는 다양한 전지구모형에서 제시하는 미래기후 시나리오를 고려하여 도시화가 급격하게 진행된 목감천 유역을 대상으로 Storm Water Management Model (SWMM)을 사용하여 전망 기간(2011년-2100년)의 수량 및 수질에 대하여 분석하였다. 또한 물순환 개선 시설 중 투수성 포장(Permeable Pavement)을 소유역별로 적용하여 수량 및 수질 측면에서 효율을 분석하였으며 사회, 경제적 인자들도 반영하여 대안평가지수(Alternative Evaluation Index, AEI)를 적용하였다. 이를 토대로 목감천 유역의 27개 소유역에 대해 투수성 포장 시설의 우선순위를 제시하였다.

해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구 (Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model)

  • 이진아;안중배
    • 한국해양학회지:바다
    • /
    • 제6권4호
    • /
    • pp.225-233
    • /
    • 2001
  • 본 연구에서는 기후 시스템 내에서의 해빙의 역할을 살펴보고자 열역학적 방식에 의한 해빙 모형을 개발하고 이를 해양대순환 모형인 MOM에 접합한 해양/해빙 접합 모형을 구축하여 수치적 실험을 하였다. 연구에서는 먼저 접합한 모형을 이용하여 해빙의 계절 평균적인 분포를 모사하였다. 또한 해양대순환 모형이 해빙 모형과 접합한 경우와 접합하지 않은 경우를 비교함으로써 대규모 해양 분포에 나타나는 해빙의 역할을 살펴보았다. 또한 모형의 결과를 다른 모형의 결과 및 관측자료와 비교 분석함으로써 해양/해빙 모형 접합 모형의 결과를 검증하였다. 접합 모형은 양반구 고위도에서의 해빙이 계절적 분포를 전체적으로 적절히 모사하였다. 해양대순환 모형이 해빙 모형과 접합한 경우와 그렇지 않은 경우에 대한 비교 연구에서 해빙은 양반구 고위도에서의 해수온과 염분을 유지시켜주는 중요한 역할을 할뿐만 아니라 South Ocean 순환세포와 남반구 순환세포(Southern Hemisphere circulation cell) 및 북대서양 심층수와 관련한 자오 심해 순환과 남극환류 같은 동서류의 순환도 적절히 모사하였다.

  • PDF

원격상관을 이용한 동아시아 6월 강수의 예측 (A Prediction of Precipitation Over East Asia for June Using Simultaneous and Lagged Teleconnection)

  • 이강진;권민호
    • 대기
    • /
    • 제26권4호
    • /
    • pp.711-716
    • /
    • 2016
  • The dynamical model forecasts using state-of-art general circulation models (GCMs) have some limitations to simulate the real climate system since they do not depend on the past history. One of the alternative methods to correct model errors is to use the canonical correlation analysis (CCA) correction method. CCA forecasts at the present time show better skill than dynamical model forecasts especially over the midlatitudes. Model outputs are adjusted based on the CCA modes between the model forecasts and the observations. This study builds a canonical correlation prediction model for subseasonal (June) precipitation. The predictors are circulation fields over western North Pacific from the Global Seasonal Forecasting System version 5 (GloSea5) and observed snow cover extent over Eurasia continent from Climate Data Record (CDR). The former is based on simultaneous teleconnection between the western North Pacific and the East Asia, and the latter on lagged teleconnection between the Eurasia continent and the East Asia. In addition, we suggest a technique for improving forecast skill by applying the ensemble canonical correlation (ECC) to individual canonical correlation predictions.

동중국해와 황해의 조석수치모형에 관한 과거의 연구 (A Review of Tidal Models for the East China and Yellow Seas)

  • 최병호
    • 한국해안해양공학회지
    • /
    • 제5권2호
    • /
    • pp.151-171
    • /
    • 1993
  • 본 종설에서는 과거 20년에 걸친 동중국해와 황해의 조석수치모형에 대해 개관하였다. 조석모형 및 경험적인 조석도에 의거하여 이 해역의 조석양상에 대해 기술하였으며 이와 관련된 해저 조석소산, 조석혼합, 퇴적 및 순환에 대하여 기술하였다. 또한 조석모형에 관련된 문제점과 개선방법에 대하여 논의하였다.

  • PDF

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.