• Title/Summary/Keyword: General cable

Search Result 174, Processing Time 0.025 seconds

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

Comparison of Statistical Models for Analysis of Fatigue Life of Cable (케이블 피로 수명 해석 통계 모델 비교)

  • Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.129-137
    • /
    • 2003
  • The cable in the cable-supported structures is long, therefore it can be reasonable to apply the different models, compared with those used for general steel elements. This paper compares the statistical models with existing cable fatigue data, after deriving the cdf(cumulative distibution function) with modifying the log-normal distribution, the existing extremal distributions so as to include length effect. The paper presents the appropriate model for analyzing and assessing the fatigue behavior of cable which is being used for actual structures.

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

An Analysis of Stabilizing Process of Cable Dome and Its Application (케이블 돔의 안정화 이행과정해석 및 적용)

  • HwangBo, Seok;Yoo, Yong-Ju;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.69-76
    • /
    • 2006
  • Cable dome is one of tension structure which is gradually stabilized by tensioning tables from initially unstable state to finally stable state. This stabilizing process is not able to be developed by general analysis because some cables endure compression forces during stabilizing process. Thus, this paper uses dynamic relaxation method to solve this problem. To apply this stabilizing process analysis to the actual project, this paper deals with cable dome roof of Seoul Olympic Gymnasium. Finally, this paper prove the usefulness of stabilizing process analysis by comparing the analysis results and the measurements.

  • PDF

A Simple Technique to Predict the Natural Frequencies of the Sagged Cable Structures (케이블구조물의 고유진동수 추정을 위한 근사식)

  • Sang-Moo,Lee;Yong-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.3
    • /
    • pp.10-16
    • /
    • 1986
  • This paper deals with a simple, approximate formula to predict the natural frequencies of the sagged cable structures. Assuming that the propagation velocity of the lateral wave is dependent only on the local mass per unit length and local tension, the explicit simple formula to predict the fundamental period is newly derived. The modified form of these formula is also presented for the prediction of the fundamental period of general shaped cable structures. The results of comparison shows fairly good agreements with experimental results and with theoretical ones. This formula is also used to predict the natural frequencies of a long vertical cable and the derived approximate formula in that case, becomes identical to the exact solution.

  • PDF

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

Design and Implementation of Cable Data Subscriber Network Management System for High Speed Internet Service (초고속 인터넷서비스를 위한 케이블 데이터 가입자 망관리 시스템 설계 및 구현)

  • Yun Byeonh-Soo;Ha Eun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2004
  • There are several types of distributed subscribers network using Asymmetric Digital Subscriber Line (ADSL), Very high-bit rate Digital Subscriber Line (VDSL), and Data Over Cable Service Interface Specifications (DOCSIS), The efficient and concentrated network management of those several distributed subscribers networks and resources require the general information model of network, which has abstract and conceptional managed objects independent of type of network and its equipment to manage the integrated subscriber network, This paper presents the general Internet subscribers network modeling framework using RM-ODP (Reference Model Open Distributed Processing) to manage that network In the form of integrated hierarchy, This paper adopts the object-oriented development methodology with UML (Unified Modeling Language) and designs and implements the HFC network of DOCSIS as an example of the subscriber network.

  • PDF