• Title/Summary/Keyword: General X-ray system

Search Result 87, Processing Time 0.026 seconds

Investigation About Quality Control of General X-ray System

  • Kang, Byung-Sam;Son, Jin-Hyun;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • This test is for checking investigation about quality control of general X-ray system in clinic and hospital. We compared general X-ray system of clinic and hospital which are selected freely in the metropolitan area using PMX-III and carried out quality control. Carried out Kilovoltage test, mR/mAs output test, Light filed/Beam alignment test, Half value layer test. Most of test result are appeared that failure rates of clinic is higher than hospital one. Therefore, we should lower failure rates through regular quality control and make environment which can get high quality image.

  • PDF

Error Analysis of General X-ray Examination by Using Simulation Training (시뮬레이션 교육을 통한 일반 X선 검사의 오류 분석)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.919-927
    • /
    • 2018
  • The purpose of this study was to present simulation training model for general X-ray examinations and to analyze the errors that occur during the simulation training. From 2012 to 2018, a total of 183 students (77 men and 106 women) participated. The simulated X-ray system used computed radiography (CR) system. The contents of simulation training were patient's care, X-ray examinations accuracy, images stability, etc. As a result, it were found that the patient's position setting error, the accuracy error of the X-ray beam central ray, the image receptor's size and setting error, the error of the grid use, the marking error, and the error of X-ray exposure technical factors. It is expected that improved practical general X-ray examinations training of radiographer will be needed, focusing on these errors, so that we could contribute to the health care of the people by providing precise examinations and high quality medical service.

Analysis of efficiency of X-ray equipment for medical service (의료용 X-ray 기기의 성능평가)

  • Kim, Tae-Gon;Kim, Toung-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.426-426
    • /
    • 2009
  • Diagnostic X-ray system is general and basic medical equipment to be used in mostly medical organizations, but being bombed of radioactivity is a big weak point when irradiates a X-ray to the human body so that ICRP restricted the radiation exposure tolerance of the human body. In order to reduce being bombed, the many research and development is now advanced. A lots of diagnostic X-ray machines have currently used due to the increase of occurrence efficiency of X-ray and precisely the output control by using the inverter which is a high speed switching semiconductors. For getting the confidence of the X-ray machine, the same radiation occurrence, same evaluation, and same irradiation condition are necessary when evaluates X-ray irradiation. It is the most important part for the accuracy of the test result and the patient safety. This paper has produced the high voltage occurrence system of full-wave rectification method by using the LC resonance inverter, and evaluated the irradiation reproducibility in order to use it in diagnosis of the patient.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.103-112
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system ($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

Effect of the amount of battery charge on tube voltage in different hand-held dental x-ray systems

  • Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • Purpose : Hand-held dental x-ray system is a self contained x-ray machine designed to perform intraoral radiography with one or two hands. The issue about its usage as general dental radiography is still in dispute. The aim of the present study was to assess the relationship between the amount of battery charge and the tube voltage in different handheld dental x-ray systems. Materials and Methods : Seven hand-held dental x-ray units were used for the study. Tube voltage was measured with Unfors ThinX RAD (Unfors Instruments AB, Billdal, Sweden) for 3 consecutive exposures at the different amount of battery charge of each unit. The average and the deviation percentage of measured kV from indicated kV of each unit were calculated. Results : Tube voltage of only 1 unit was 70 kV (indicated by manufacturer) and those of the others were 60 kV. Tube voltage deviation percentage from the indicated kV at the fully charged battery was from 2.5% to -5.5% and from -0.8% to -10.0% at the lowest charged battery. Conclusion : Tube voltages of all units decreased as the residual amount of the battery charge decreased. It is suggested that the performance test for hand-held x-ray system should be performed for the minimum residual charged battery as well as the full charged one. Persistent battery charging is suggested to maintain the proper tube voltage of the hand-held portable x-ray system.

General Requirements Pertaining to Radiation Protection in Diagnostic X-ray Equipment -KFDA DRS 1-1-3 : 2008 base on IEC 60601-1-3:2008- (진단용 엑스선 장치에 있어서 방사선 방어에 대한 일반 요구사항 -IEC 60601-1-3:2008에 근거한 KFDA DRS 1-1-3:2008-)

  • Kang, Hee-Doo;Dong, Kyung-Rae;Kweon, Dae-Cheol;Choi, Jun-Gu;Jeong, Jae-Ho;Jung, Jae-Eun;Ryu, Young-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • This study gives an account of the collateral standards in IEC 60601-1-3: 2008 specifying the general requirements for basic safety and essential performance of diagnostic X-ray equipment regarding radiation protection as it pertains to the production of X-rays. The collateral standards establish general requirements for safety regarding ionization radiation in diagnostic radiation systems and describe a verifiable evaluation method of suitable requirements regarding control over the lowest possible dose equivalent for patients, radiologic technologists, and others. The particular standards for each equipment can be determined by the general requirements in the collateral standard and the particular standard is followed in the risk management file. The guidelines for radiation safety of diagnostic radiation systems is written up in ISO 13485, ISO 14971, IEC 60601-1-3(2002)1st edition, medical electric equipment part 1-3, and the general requirements for safety-collateral standards: programmable electrical medical systems. Therefore the diagnostic radiation system protects citizens' health rights with the establishment and revisions of laws and standards for diagnostic radiation systems as a background for the general requirements of radiation safe guards applies, as an international trend, standards regarding the medical radiation safety management. The diagnostic radiation system will also assure competitive power through a conforming evaluation unifying the differing standards, technical specifications, and recognized processes.

  • PDF

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

Effective Maintenance of Medical Device through System Failure Analysis (의료기기 고장 발생의 원인 분석을 통한 효과적인 보수유지 방법의 개선)

  • Kang, H.H.;Kim, J.S.;Kim, S.H.;Huh, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.106-107
    • /
    • 1998
  • To minimize the failure rate of medical devices, the maintenance records for general X-ray, R/F X-ray, mobile X-ray, artificial dialyzer, ventilator, and automatic chemistry analyzer was analysed with regard to the cause of the failure. The parts responsible for the most frequent system failure was then worked intensively during the preventive maintenance. After this procedure, the faliure of the systems in a month decreased from 1.8 on average to 0.3.

  • PDF

The Performance Test of Anti-scattering X-ray Grid with Inclined Shielding Material by MCNP Code Simulation

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • Background: The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. Materials and Methods: The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. Results and Discussion: The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination. Conclusion: It was shown that the grid of inclined type had better performance than that of parallel one.