• 제목/요약/키워드: Gene ontology analysis

검색결과 232건 처리시간 0.027초

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

IFSA 알고리즘을 이용한 유전자 상호 관계 분석 (Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis))

  • 김혜진;최승진;방승양
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권3호
    • /
    • pp.157-165
    • /
    • 2006
  • 세포는 환경 변화 및 자극으로부터 자신을 보호하기 위해 유전자가 발현하여 생명을 유지 시스템을 갖고 있다. 유전자의 발현은 비정상적인 상태의 세포를 환경을 조절, 변화시켜 정상으로 바꾸기 위한 기능, 발달단계에 필요한 기능 등 생명현상에 필요한 특수 역할을 수행한다. 따라서 각 유전자의 기능을 아는 것은 생물학적으로 상당히 의미 있는 일이다. 본 논문에서는 유전자 기능을 알아보기 위해 발현 패턴을 통해 같을 때, 유사한 형태 혹은 시차를 갖고 동일한 형태로 발현하는 유전자들은 같은 기능을 한다는 가정을 하였다. 이 가정에 기반하여 각 유전자들을 기능에 따라 분류하였다. (1) IFSA선형 모델을 적용하여 데이타를 잘 나타내 줄 수 있는 특징 패턴을 찾았으며 (2) 이 특징 패턴으로부터 본 논문에서 제안한 Membership Scoring Function을 이용하여 유전자를 필터링(filtering) 하였다. 이 유전자들은 기존의 ICA(Independent Component Analysis) 방법에서 보다 IFSA 방법이 더 효과적으로 각 기능에 따른 유전자 그룹을 찾아내줌을 GO(Gene Ontology)에서 확인할 수 있었다. 이는 시차 혹은 위상 변화에 상관없이 데이타를 잘 나타낼 수 있는 IFSA의 특성이, ICA보다. 생물학적인 변수를 더 고려해 줄 수 있기 때문이라고 생각된다[1]. 이 논문의 또 다른 주요 작업은 유전자의 상호작용 관계로부터 유전자 네트웍을 얻어내는 것이다. 유전자 네트웍은 같은 그룹 내에서 유전자간의 상관 계수를 구하고 가장 높은 상관도를 보이는 유전자쌍을 연결시켜 얻게되었다. 이 네트웍 역시 GO 해석에서 그 유효성을 확인하였다.를 평균 66.02에서 58.98로 줄이면서 계산시간은 평균 71ms에서 44ms 으로 빠르게 됨을 알 수 있었다.적외선 분광법을 이용한 사일리지의 화학적 조성분 함량 측정은 적은 오차 범위 내에서 신속하고 정확한 분석법이 될 수 있음을 확인 할 수 있었다. 비록 원물 생시료(IF)에 대한 직접적인 측정은 다소 예측 정확성이 떨어지지만 현장 적용성과 편리성을 높이기 위해서는 생시료의 측정시 오차를 줄일 수 있는 스펙트럼의 수처리 방법이나 산란보정 방법과 같은 데이터 처리기법에 대한 더 많은 연구가 앞으로 진행되어야 한다고 생각되어진다.상자의 50% 이상이 매일 생선 콩 및 콩제품과 채소류를 먹고 있었고, 인스턴트나 패스트푸드는 정상 체중군이 저체중군이나 과체중보다 매일 섭취하는 빈도가 낮았다(p<0.0177). 7. 가장 낮은 영양 섭취 상태를 보여준 영양소(% RDA< 75%)는 철분과 칼슘으로 조사 대상자의 3/4에 해당하는 조사 대상자가 영양 부족 상태였다. 칼슘 섭취의 경우 정상 체중군이 과체중군과 저체중군보다 섭취율이 낮았으나(p<0.0257) 철분은 군간 유의차는 없었다. 8. 칼슘의 경우 과체중군이 저체중군이나 정상 체중군에 비해 영양소 적정비율(NAR) 값이 높았으며(p<0.0257) 철분, 단백질, 비타민 $B_1$$B_2$, 나이아신의 경우도 통계적으로 유의하지는 않으나 과체중군이 저체중군 또는 정상 체중군의 NAR 값이 높은 경향을 보여주었다. 9가지 영양소의 NAR을 평균한 MAR 값은 군간 유의적이지는 않으나 과체중군(0.76)이 정상체중(0.73) 또는 저체중군(0.73)에 비해 높은 값은 보여주었다. 9.

Differentially expressed serum proteins associated with calcium regulation and hypocalcemia in dairy cows

  • Shu, Shi;Bai, Yunlong;Wang, Gang;Xiao, Xinhuan;Fan, Ziling;Zhang, Jiang;Zhao, Chang;Zhao, Yang;Xia, Cheng;Zhang, Hongyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.893-901
    • /
    • 2017
  • Objective: Hypocalcemia is an important metabolic disease of dairy cows during the transition period, although the effect of hypocalcemia on biological function in dairy cows remains unknown. Methods: In this study, proteomic, mass spectrum, bioinformatics and western blotting were employed to identify differentially expressed proteins related to serum Ca concentration. Serum samples from dairy cows were collected at three time points: 3rd days before calving (day -3), the day of calving (day 0), and 3rd days after calving (day +3). According to the Ca concentration on day 0, a total of 27 dairy cows were assigned to one of three groups (clinical, subclinical, and healthy). Samples collected on day -3 were used for discovery of differentially expressed proteins, which were separated and identified via proteomic analysis and mass spectrometry. Bioinformatics analysis was performed to determine the function of the identified proteins (gene ontology and pathway analysis). The differentially expressed proteins were verified by western blot analysis. Results: There were 57 differential spots separated and eight different proteins were identified. Vitamin D-binding protein precursor (group-specific component, GC), alpha-2-macroglobulin (A2M) protein, and apolipoprotein A-IV were related to hypocalcemia by bioinformatics analysis. Due to its specific expression (up-regulated in clinical hypocalcemia and down-regulated in subclinical hypocalcemia), A2M was selected for validation. The results were consistent with those of proteomic analysis. Conclusion: A2M was as an early detection index for distinguishing clinical and subclinical hypocalcemia. The possible pathogenesis of clinical hypocalcemia caused by GC and apolipoprotein A-IV was speculated. The down-regulated expression of GC was a probable cause of the decrease in calcium concentration.

Expression profiles of circular RNAs in sheep skeletal muscle

  • Cao, Yang;You, Shuang;Yao, Yang;Liu, Zhi-Jin;Hazi, Wureli;Li, Cun-Yuan;Zhang, Xiang-Yu;Hou, Xiao-Xu;Wei, Jun-Chang;Li, Xiao-Yue;Wang, Da-Wei;Chen, Chuang-Fu;Zhang, Yun-Feng;Ni, Wei;Hu, Sheng-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1550-1557
    • /
    • 2018
  • Objective: Circular RNAs (circRNAs) are a newfound class of non-coding RNA in animals and plants. Recent studies have revealed that circRNAs play important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports about muscle development-related circRNAs in livestock. Methods: RNA sequencing analysis was employed to identify and annotate circRNAs from longissimus dorsi of sheep. Reverse transcription followed by real-time quantitative (q) polymerase chain reaction (PCR) analysis verified the presence of these circRNAs. Targetscan7.0 and miRanda were used to analyse the interaction of circRNA-microRNA (miRNA). To investigate the function of circRNAs, an experiment was conducted to perform enrichment analysis hosting genes of circRNAs using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Results: About 75.5 million sequences were obtained from RNA libraries of sheep skeletal muscle. These sequences were mapped to 729 genes in the sheep reference genome. We identified 886 circRNAs, including numerous circular intronic RNAs and exonic circRNAs. Reverse transcription PCR (RT-PCR) and DNA sequencing analysis confirmed the presence of several circRNAs. Real-Time RT-PCR analysis exhibited resistance of sheep circRNAs to RNase R digestion. We found that many circRNAs interacted with muscle-specific miRNAs involved in growth and development of muscle, especially circ776. The GO and KEGG enrichment analysis showed that hosting genes of circRNAs was involved in muscle cell development and signaling pathway. Conclusion: The study provides comprehensive expression profiles of circRNAs in sheep skeletal muscle. Our study offers a large number of circRNAs to facilitate a better understanding of their roles in muscle growth. Meanwhile, we suggested that circ776 could be analyzed in future study.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

한국 토종닭의 전장 유전체 복제수변이(CNV) 발굴 (Genome-wide Copy Number Variation in a Korean Native Chicken Breed)

  • 조은석;정원형;최정우;장현준;박미나;김남신;김태헌;이경태
    • 한국가금학회지
    • /
    • 제41권4호
    • /
    • pp.305-311
    • /
    • 2014
  • 복제수변이(Copy number variation, CNV)는 DNA 다양한 구조적 변화의 한 형태이다. 복제수변이는 인간의 질병 및 농업의 생산성에 영향을 미치는 것으로 알려져 있다. 이전 우리나라의 닭의 품종은 유럽에서 유입되어진 품종을 기반으로 구축되어져 있었다. 따라서 농촌진흥청 국립축산과학원에서는 20년 동안 재래품종을 복원하려고 노력하였고, 5품종 12계통으로 복원하였다. 최근 염기서열분석 기술의 발달로, 해상도가 좋은 게놈 전체의 복제수변이를 발굴할 수 있게 되었다. 그러나 한국 재래닭 품종에 대해서는 체계적인 연구가 이루어지지 않고 있다. 본 연구에서는 한국 재래 닭(계통 L)에 대해서 게놈 전체의 염기서열을 분석하고 닭의 참고서열과 비교하여 재래닭에서 확인된 복제수 변이를 보고하였다. 닭의 28개 염색체에서 총 501개의 복제수 변이를 확인하였고, 이를 Gain과 Loss로 나누어서 표시하였다. 또한 우리는 501개의 복제수 변이를 포함하고 있는 유전자의 기능을 분류하였다. 그 결과, 전사 및 유전자 조절에 관련된 유전자들이 많이 분류되었다. 본 연구의 결과는 복제수 변이와 한국 재래닭의 경제형질 간의 연관성을 설명할 수 있는 기초자료로 활용될 것으로 사료된다.

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability

  • Zhu, Zhu;Li, Ruimei;Qin, Wei;Zhang, Hantao;Cheng, Yao;Chen, Feiyan;Chen, Cuihua;Chen, Lin;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.750-758
    • /
    • 2022
  • Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a proteineprotein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.