• 제목/요약/키워드: Gene mutation assay (MLA)

검색결과 3건 처리시간 0.018초

Genotoxicity of Aluminum Oxide ($Al_2O_3$) Nanoparticle in Mammalian Cell Lines

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mi-Kyung;Youk, Da-Young;Kim, Ji-Hee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.172-178
    • /
    • 2009
  • Nanoparticles are small-scale substances (<100 nm) with unique properties, complex exposure and health risk implications. Aluminum oxide ($Al_2O_3$) nanoparticles (NP) have been widely used as abrasives, wear-resistant coatings on propeller shafts of ships, to increase the specific impulse per weight of composite propellants used in solid rocket fuel and as drug delivery systems to increase solubility. However, recent studies have shown that nano-sized aluminum (10 nm in diameter) can generate adverse effects, such as pulmonary response. The cytotoxicity and genotoxicity of $Al_2O_3$ NP were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase (tk$^{+/-}$) gene mutation assay (MLA). IC$_{20}$ values of $Al_2O_3$ NP in BEAS-2B cells were determined the concentration of 273.44 $\mu$g/mL and 390.63 $\mu$g/mL with and without S-9. However IC$_{20}$ values of $Al_2O_3$ NP were found nontoxic in L5178Y cells both of with and without S-9 fraction. In the comet assay, L5178Y cells and BEAS-2B cells were treated with $Al_2O_3$ NP which significantly increased 2-fold tail moment with and without S-9. Also, the mutant frequencies in the $Al_2O_3$ NP treated L5178Y cells were increased compared to the vehicle controls with S-9. The results of this study indicate that $Al_2O_3$ NP can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.

Genotoxicity Study of Dimethyl Isophthalate in Bacterial and Mammalian Cell System

  • Chung, Young-Shin;Choi, Seon-A;Hong, Eun-Kyung;Ryu, Jae-Chun;Lee, Eun-Jung;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.53-59
    • /
    • 2007
  • This study was conducted to evaluate the mutagenic potential of dimethyl isophthalate (DMIP) using Ames bacterial reverse mutation test, chromosomal aberration test and mouse lymphoma $tk^{+/-}$ gene assay. As results, in Ames bacterial reversion assay, DMIP was tested up to the concentration of 5,000 ${\mu}g$/plate and did not induce mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537, and Escherichia coli WP2uvrA with or without metabolic activation (S9 mix). Using cytotoxicity test, the maximal doses of DMIP for chromosomal aberration assay were determined at 1,250 ${\mu}g/mL$, which was a minimum precipitation concentration ($IC_{50}>1,940\;{\mu}g/mL$ or 10 mM) and at 155 ${\mu}g/mL$ ($IC_{50}:155\;{\mu}g/mL$) in the presence and the absence, respectively, of S9 mix. DMIP in the presence of S9 mix induced statistically significant (P<0.001) increases in the number of cells with chromosome aberrations at the dose levels of over 250 ${\mu}g/mL$, when compared with the negative control. However, DMIP in the absence of S9 mix did not caused significant induction in chromosomal aberrant cells. In MLA, DMIP at the dose range of 242.5-1,940 ${\mu}g/mL$ in the presence of S9 mix induced statistically significant increases in mutation frequencies related to small colony growth, whereas any significant mutation frequency was not observed in absence of S9 mix. From these results, it is conclusively suggested that dimethyl isophthalate may be a clastogen rather than a point mutagen.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.