• Title/Summary/Keyword: Gene expressing

Search Result 571, Processing Time 0.029 seconds

7α-Hydroxycholesterol Elicits TLR6-Mediated Expression of IL-23 in Monocytic Cells

  • Seo, Hyun Chul;Kim, Sun-Mi;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. $7{\alpha}$-Hydroxycholesterol ($7{\alpha}OHChol$) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with $7{\alpha}OHChol$ resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit ${\alpha}$ (p19) and the IL-12 subunit ${\beta}$ (p40). However, treatment with 7-ketocholesterol (7K) and $7{\beta}$-hydroxycholesterol ($7{\beta}OHChol$) did not affect TLR6 expression, and addition of FSL-1 to cells treated with either 7K or $7{\beta}OHChol$ did not influence transcription of the genes. Pharmacological inhibition of ERK, Akt, or PI3K resulted in attenuated transcription of TLR6 induced by $7{\alpha}OHChol$ as well as secretion of IL-23 enhanced by $7{\alpha}OHChol$ plus FSL-1. Inhibition of p38 MAPK or JNK resulted in attenuated secretion of IL-23. These results indicate that a certain type of 7-oxygenated cholesterol like $7{\alpha}OHChol$ can elicit TLR6-mediated expression of IL-23 by monocytic cells via PI3K/Akt and MAPKs pathways.

Altered Amino Acid Metabolic Patterns in the Plasma of Rat Models with Adenovirus Infection

  • Paik, Man-Jeong;Shim, Woo-Young;Moon, Seung-Min;Kim, Yeon-Mi;Kim, Dong-Wan;Kim, Kyoung-Rae;Kim, Sun-A;Shim, Jeom-Soon;Choi, Sang-Dun;Lee, Gwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1569-1574
    • /
    • 2011
  • The presence of replication-competent adenovirus (RCA) subpopulations in adenoviral vector products raises a variety of safety issues for development of therapies based on gene therapy. To analyze the differing effects of adenoviral vector and RCA in vivo, we examined alterations in amino acids (AAs) using rat plasma following injection of ${\beta}$-galactosidase expressing recombinant adenovirus (designated rAdLacZ) or RCA. Plasma AAs were examined by gas chromatography-mass spectrometry. A total of 16 AAs were positively measured. In the rAdLacZ group compared to the control group, the level of aspartic acid was significantly increased (Student's t-test), while the level of glutamic acid was significantly reduced. Additionally, in the RCA group compared to the control group, the level of four AAs, valine, leucine, and isoleucine as branched-chain amino acids, and proline were significantly increased, whereas the levels of three AAs, glycine, threonine, and glutamic acid were significantly reduced. Altered plasma free AA metabolic patterns in rAdLacZ and RCA groups, compared with the control group, may explain the disturbance of AA metabolism related to viral infection.

Silencing of Twist Expression by RNA Interference Suppresses Epithelial-mesenchymal Transition, Invasion, and Metastasis of Ovarian Cancer

  • Wang, Wen-Shuang;Yang, Xing-Sheng;Xia, Min;Jiang, Hai-Yang;Hou, Jian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4435-4439
    • /
    • 2012
  • Purpose: This study aimed to explore the role of the Twist gene in the epithelial-mesenchymal transition of ovarian cancer. Methods: An RNA interference plasmid expressing a small interfering RNA (siRNA)-targeting Twist (Twist siRNA vector) was designed, constructed, and transfected into the human ovarian cancer cell line A2780. Transfection efficiency was assessed under a fluorescence microscope. Changes in the expression of Twist mRNA in A2780 after transfection with the pGenesil Twist shRNA plasmid were analyzed through RT-PCR. MTT assays and adhesion experiments were applied to determine changes in proliferation and adhesion ability of A2870 after transfection with the Twist shRNA plasmid. Changes in the expression of the E-cadherin and N-cadherin proteins in A2780 after transfection with the Twist shRNA plasmid were analyzed using Western blotting. Result: The restructuring plasmid pGenesil-Twist shRNA was constructed successfully. After 48 h of culture, 80% of the cells expressed high-intensity GFP fluorescence and stability. The expression of Twist decreased significantly after the transfection of the Twist shRNA plasmid (P<0.05). Proliferation of the transfected Twist shRNA cells showed no difference with that of the A2780-nontransfection or A2780-si-control groups (P>0.05) but the adhesion ability of A2780 decreased dramatically (P<0.05). Expression of the E-cadherin protein increased, whereas that of the N-cadherin protein decreased compared with that in the A2780-nontransfection or A2780-si-control groups (P<0.05). Conclusion: Twist is essential for epithelial-mesenchymal transition, invasion, and metastasis of ovarian cancer.

Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

  • Park, Tae Sub;Kim, Si Won;Lee, Jeong Hyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.886-892
    • /
    • 2017
  • Objective: Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods: After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results: In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion: Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression.

AtMYB7 Acts as a repressor of lignin biosynthesis in Arabidopsis (애기장대 MYB7 유전자의 리그닌 생합성 억제 조절)

  • Kim, Won-Chan
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2016
  • Abstract Secondary cell wall is the most abundant biomass produced by plants. Plant secondary cell wall is composed of a complex mixture of cellulose, hemicellulose, and lignin. Lignin, a phenolic polymer that hinders the degradation of cell wall polysaccharides to simple sugars destined for fermentation to bio-ethanol. Cell wall biosynthesis pathway-specific biomass engineering offers an attractive 'genetic pretreatment' strategy to improve bioenergy feedstock. Recently, we found a transcription factor, MYB7, which is a transcriptional switch that may turns off the genes necessary for lignin biosynthesis. To gain insights into MYB7 mediated transcriptional regulation, we first established a dominant suppression system in Arabidopsis by expressing MYB7-SRDX. Then we used a transient transcriptional activation assay to confirm that MYB7 suppress the transcription of the lignin biosynthetic gene. Taken together, we conclude that MYB7 function as a repressor of the genes involved in the lignin biosynthesis.

Characterization of the nar Promoter of Escherichia coli to use as an inducible promoter in Wild-type host Agrobacterium.tumefaciens

  • Lee, Gil-Ho;Jo, Mu-Hwan;Lee, Jong-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.758-761
    • /
    • 2001
  • In this study, the nar promoter of E. coli was characterized to see whether the nar promoter cloned onto pBBR122 can be used as an expression promoter of gram negative microbes. For this purpose, a plasmid with lacZ gene expressing ${\beta}-galactosidase$ instead of the structural genes of nar operon in a gram negative host strain(Agrobacterium.tumefaciens) was used to simplify an assay of induction of the nar promoter. The following effects were investigated to find optimal conditions: methods of inducing the nar promoter, optimal nitrate concentration, maximally inducing the nar promoter, the amount of expressed ${\beta}-galactosidase$ and induction ratio(specific ${\beta}-galactosidase$ activity after maximal induction/specific ${\beta}-galactosidase$ activity before induction). The following results were obtained from the experiments: the growth of Agrobacterium with E.coli nar promoter was not much affected by nitrate concentration in the shake-flask; induction of nar promoter was optimal when Agrobacterium was grown in the presence of 1% nitrate ion at the beginning of culture and when overnight culture was completely grown in the shake-flask before being transferred to other shake-flask; the amount of ${\beta}-galactosidase$ per cell and per medium volume was maximal when Agrobacterium was grown under aerobic condition to $OD_{600}$ of 1.7; then the nar promoter was induced under microaerobic and anaerobic condition made by lowering dissolved oxygen level(DO). After 2-3h of induction in the YEP medium selected as a main culture medium, the specific ${\beta}-galactosidase$ activity became about 17,000 Miller units in the fermentor cluture.

  • PDF

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

Gut-residing Microbes Alter the Host Susceptibility to Autoantibody-mediated Arthritis

  • Lee, Hyerim;Jin, Bo-Eun;Jang, Eunkyeong;Lee, A Reum;Han, Dong Soo;Kim, Ho-Youn;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • K/BxN serum can transfer arthritis to normal mice owing to the abundant autoantibodies it contains, which trigger innate inflammatory cascades in joints. Little is known about whether gut-residing microbes affect host susceptibility to autoantibody-mediated arthritis. To address this, we fed C57BL/6 mice with water containing a mixture of antibiotics (ampicillin, vancomycin, neomycin, and metronidazol) for 2 weeks and then injected them with K/BxN serum. Antibiotic treatment significantly reduced the amount of bacterial genomic DNA isolated from fecal samples, in particular a gene encoding 16S ribosomal RNA derived from segmented filamentous bacteria. Arthritic signs, as indicated by the arthritic index and ankle thickness, were significantly attenuated in antibiotic-treated mice compared with untreated controls. Peyer's patches and mesenteric lymph nodes from antibiotic-treated mice contained fewer IL-17-expressing cells than those from untreated mice. Antibiotic treatment reduced serum C3 deposition in vitro via the alternative complement pathway. IL-$17^{-/-}$ congenic C57BL/6 mice were less susceptible to K/BxN serum-transferred arthritis than their wild-type littermates, but were still responsive to treatment with antibiotics. These results suggest that gut-residing microbes, including segmented filamentous bacteria, induce IL-17 production in GALT and complement activation via the alternative complement pathway, which cause the host to be more susceptible to autoantibody-mediated arthritis.

Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress

  • Kim, Pyung-Hwan;Na, Sang-Su;Lee, Bomnaerin;Kim, Joo-Hyun;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.702-707
    • /
    • 2015
  • To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.