• Title/Summary/Keyword: Gene diversity

Search Result 956, Processing Time 0.026 seconds

Phenotypic diversity, major genes and production potential of local chickens and guinea fowl in Tamale, northern Ghana

  • Brown, Michael Mensah;Alenyorege, Benjamin;Teye, Gabriel Ayum;Roessler, Regina
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1372-1381
    • /
    • 2017
  • Objective: Our study provides information on phenotypes of local chickens and guinea fowl and their body measures as well as on major genes in local chickens in northern Ghana. Methods: Qualitative and morphometric traits were recorded on 788 local chickens and 394 guinea fowl in urban households in Tamale, Ghana. Results: The results showed considerable variation of color traits and numerous major genes in local chickens, while color variations and related genotypes in guinea fowl were limited. In local chickens, white was preferred for plumage, whereas dark colors were preferred for beak and shanks. More than half of the chickens carried at least one major gene, but the contributions of single gene carriers were low. All calculated allele frequencies were significantly lower than their expected Mendelian allele frequencies. We observed higher mean body weight and larger linear body measures in male as compared to female chickens. In female chickens, we detected a small effect of major genes on body weight and chest circumference. In addition, we found some association between feather type and plumage color. In guinea fowl, seven distinct plumage colors were observed, of which pearl grey pied and pearl grey were the most prevalent. Male pearl grey pied guinea fowl were inferior to pearl grey and white guinea fowl in terms of body weight, body length and chest circumference; their shank length was lower than that of pearl grey fowl. Conclusion: Considerable variation in qualitative traits of local chickens may be indicative of genetic diversity within local chicken populations, but major genes were rare. In contrast, phenotypic and genetic diversity in local guinea fowl is limited. Broader genetic diversity studies and evaluation of trait preferences of local poultry producers are required for the design of appropriate breeding programs.

Diversity based Ensemble Genetic Programming for Improving Classification Performance (분류 성능 향상을 위한 다양성 기반 앙상블 유전자 프로그래밍)

  • Hong Jin-Hyuk;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1229-1237
    • /
    • 2005
  • Combining multiple classifiers has been actively exploited to improve classification performance. It is required to construct a pool of accurate and diverse base classifier for obtaining a good ensemble classifier. Conventionally ensemble learning techniques such as bagging and boosting have been used and the diversify of base classifiers for the training set has been estimated, but there are some limitations in classifying gene expression profiles since only a few training samples are available. This paper proposes an ensemble technique that analyzes the diversity of classification rules obtained by genetic programming. Genetic programming generates interpretable rules, and a sample is classified by combining the most diverse set of rules. We have applied the proposed method to cancer classification with gene expression profiles. Experiments on lymphoma cancer dataset, prostate cancer dataset and ovarian cancer dataset have illustrated the usefulness of the proposed method. h higher classification accuracy has been obtained with the proposed method than without considering diversity. It has been also confirmed that the diversity increases classification performance.

Genetic Diversity and Population Structure of Pseudobagrus fulvidraco in the Nakdong River (낙동강에 분포하는 동자개 집단의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu;Choi, Joo-Soo;Heo, Youn-Seong;Lee, Bok-Kyu
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.882-888
    • /
    • 2007
  • Enzyme electrophoresis was used to estimate genetic diversity and population genetic structure of Pseudobagrus fulvidraco in Korea. Nine of the 14 loci (64.3%) showed detectable polymorphism. Genetic diversity at the population and species levels were 0.286 and 0.277, respectively. Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficit of hetero-zygotes relative to Hardy-Weinberg expectations. This deficit is expected that it is due to a limited effective number of individuals per population. The average $G_{ST}$ for polymorphic loci was 0.064, indicating that most (93.6%) of the genetic diversity occurred within populations. The indirect estimate of gene flow based on mean $G_{ST}$ was 3.67. Given limited gene flow is expected to diverge genetically due to drift and reduced populations. Most populations in our study experience annual, severe demo-graphic bottlenecks due to drought and floods.

EST-SSR Based Genetic Diversity and Population Structure among Korean Landraces of Foxtail Millet (Setaria italica L.)

  • Ali, Asjad;Choi, Yu-Mi;Do, Yoon-Hyun;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Cho, Yang-Hee;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.322-330
    • /
    • 2016
  • Understanding the genetic variation among landrace collections is important for crop improvement and utilization of valuable genetic resources. The present study was carried out to analyse the genetic diversity and associated population structure of 621 foxtail millet accessions of Korean landraces using 22 EST-SSR markers. A total of 121 alleles were detected from all accessions with an average of 5.5 alleles per microsatellite locus. The average values of gene diversity, polymorphism information content, and expected heterozygosity were 0.518, 0.594, and 0.034, respectively. Following the unweighted neighbor-joining method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 3 clusters, and population structure analysis also separated into 3 populations. Principal coordinate analysis (PCoA) explained a variation of 13.88% and 10.99% by first and second coordinates, respectively. However, in PCoA analysis, clear population-level clusters could not be found. This pattern of distribution might be the result of gene flow via germplasm exchanges in nearby regions. The results indicate that these Korean landraces of foxtail millet exhibit a moderate level of diversity. This study demonstrated that molecular marker strategies could contribute to a better understanding of the genetic structure in foxtail millet germplasm, and provides potentially useful information for developing conservation and breeding strategies.

Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites

  • Pourkhaloee, Ali;Khosh-Khui, Morteza;Arens, Paul;Salehi, Hassan;Razi, Hooman;Niazi, Ali;Afsharifar, Alireza;Tuyl, Jaap van
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.875-888
    • /
    • 2018
  • Tulip (Tulipa L.) is one of the most important ornamental geophytes in the world. Analysis of molecular variability of tulips is of great importance in conservation and parental lines selection in breeding programs. Of the 70 genic microsatellites, 15 highly polymorphic and reproducible markers were used to assess the genetic diversity, structure, and relationships among 280 individuals of 36 wild and cultivated tulip accessions from two countries: Iran and the Netherlands. The mean values of gene diversity and polymorphism information content were 0.69 and 0.66, respectively, which indicated the high discriminatory power of markers. The calculated genetic diversity parameters were found to be the highest in wild T. systola Stapf (Derak region). Bayesian model-based STRU CTU RE analysis detected five gene pools for 36 germplasms which corresponded with morphological observations and traditional classifications. Based on analysis of molecular variance, to conserve wild genetic resources in some geographical locations, sampling should be performed from distant locations to achieve high diversity. The unweighted pair group method with arithmetic mean dendrogram and principal component analysis plot indicated that among wild tulips, T. systola and T. micheliana Hoog exhibited the closest relationships with cultivated tulips. Thus, it can be assumed that wild tulips from Iran and perhaps other Middle East countries played a role in the origin of T. gesneriana, which is likely a tulip species hybrid of unclear origin. In conclusion, due to the high genetic variability of wild tulips, they can be used in tulip breeding programs as a source of useful alleles related to resistance against stresses.

Diversity Census of Fecal Microbiome in Horses (말 분변 내 마이크로바이옴 다양성 조사)

  • Lee, Seul;Kim, Minseok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2019
  • This study was conducted to analyze the diversity census of fecal microbiome in horses using meta-analysis of equine 16S rRNA gene sequences that are available in the Ribosomal Database Project (RDP; Release 11, Update 5). The search terms used were "horse feces (or faeces)" and "equine feces (or faeces)". A total of 842 sequences of equine feces origin were retrieved from the RDP database, where 744 sequences were assigned to 10 phyla placed within Domain Bacteria. Firmicutes (n = 391) and Bacteroidetes (n = 203) were the first and the second dominant phyla, respectively, followed by Verrucomicrobia (n = 58), Proteobacteria (n = 30) and Fibrobacteres (n = 24). Clostridia (n = 319) was the first dominant class placed within Bacteroidetes while Bacteroidia (n = 174) was the second dominant class placed within Bacteroidetes. The remaining 98 sequences were assigned to phylum Euryarchaeota placed within Domain Archaea, where 74 sequences were assigned to class Methanomicrobia. The current results will improve understanding of the diversity of fecal microbiome in horses and may be used to further analyze equine fecal microbiome in future studies.

Genetic diversity assessment of Aconitum coreanum (H. Lév.) Rapaics (Ranunculaceae), an endangered plant species in Korea, using microsatellite markers

  • Won, Hyosig;Yun, Young-Eun;Kwak, Myounghai;Han, Jeong Eun
    • Journal of Species Research
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • To assess the genetic diversity of Aconitum coreanum (Ranunculaceae) populations in Korea, we have amplified and sequenced eight organellar marker regions, and developed and analyzed microsatellite markers. No sequence variation was detected from the eight organellar markers. Ten microsatellites were developed using Next Generation Sequencing and two microsatellite markers, AK_CA03 and AK_CT07, were identified polymorphic and applied for 143 individuals of twelve A. coreanum populations. Four and five alleles were detected for the two microsatellite loci, respectively, and number of migrants ($N_m$) was estimated as 1.12586. Two microsatellite marker loci showed $F_{ST}$ of 0.205 and 0.275, respectively. The heterozygosity deficit, low level of among-population differentiation, small size of gene flow, and lack of sequence variation of the organellar markers suggest that A. coreanum is reproductively isolated from other Aconitum species and there has been continuous gene flow among the populations of A. coreanum or it has dispersed relatively recently after speciation. Though population pairwise $F_{ST}$'s presented significant geographic structure, further sampling and study will be necessary to confirm this.

Beyond gene expression level: How are Bayesian methods doing a great job in quantification of isoform diversity and allelic imbalance?

  • Oh, Sunghee;Kim, Chul Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.225-243
    • /
    • 2016
  • Thanks to recent advance of next generation sequencing techniques, RNA-seq enabled to have an unprecedented opportunity to identify transcript variants with isoform diversity and allelic imbalance (Anders et al., 2012) by different transcriptional rates. To date, it is well known that those features might be associated with the aberrant patterns of disease complexity such as tissue (Anders and Huber, 2010; Anders et al., 2012; Nariai et al., 2014) specific differential expression at isoform levels or tissue specific allelic imbalance in mal-functionality of disease processes, etc. Nevertheless, the knowledge of post-transcriptional modification and AI in transcriptomic and genomic areas has been little known in the traditional platforms due to the limitation of technology and insufficient resolution. We here stress the potential of isoform variability and allelic specific expression that are relevant to the abnormality of disease mechanisms in transcriptional genetic regulatory networks. In addition, we systematically review how robust Bayesian approaches in RNA-seq have been developed and utilized in this regard in the field.

Genetic diversity of the threatened Saussurea dorogostaiskii (Asteraceae) in the Khuvsgul region of Mongolia

  • Nudkhuu NYAMGEREL;Shukherdorj BAASANMUNKH;Batlai OYUNTSETSEG;Dashzeveg OYUNTSETSEG;Joscelyn NORRIS;Hyeok Jae CHOI;Gun-Aajav BAYARMAA
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.14-24
    • /
    • 2023
  • Saussurea dorogostaiskii Palib. (Asteraceae) is a critically endangered medicinal plant in Mongolia and Russia. We studied the genetic variation of S. dorogostaiskii from three mountains of northern Mongolia. The genetic profile was assessed in 70 individuals from eight populations using five inter-simple sequence repeat markers, producing 53 loci with 96.4% polymorphism across all bands. Shannon's index (I) and Nei's gene diversity (H) value at the species level of S. dorogostaiskii are 0.25 and 0.17, respectively. An AMOVA showed high genetic variation among the populations (22% of populations and 32% of mountains), consistent with the high genetic differentiation (GST = 0.49) and low gene flow (Nm = 0.51) in S. dorogostaiskii populations. Eight populations were clustered into two groups, corresponding to their geographic locations. The low within-population genetic diversity and high genetic differentiation among S. dorogostaiskii populations factor into their endangered designation. This genetic analysis reveals that all populations are equally threatened, and community-based conservation is appropriate for these species.

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.