• Title/Summary/Keyword: Gene delivery system

Search Result 108, Processing Time 0.032 seconds

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

A Study of the Generation of Transgenic Chickens That Express Human SOD-3 Protein (사람의 SOD-3 단백질을 발현하는 형질전환 닭 생산 연구)

  • Byun, S.J.;Park, C.;Kim, J.A.;Woo, J.S.;Lee, H.C.;Kim, T.Y.;Kim, S.H.;Seong, H.H.;Park, J.K.;Jeon, I.S.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • Lentiviral vector system is efficient vehicles for the delivery of exogenous genes, and it is generally used in the generation of transgenic chickens. In this study, we used recombinant lentiviral vectors to generate transgenic chicks that express the human superoxide dismutase-3 gene driven by the chicken ovalbumin promoter. It is well known that superoxide dismutases(SODs) are believed to play a crucial role in protecting cells against oxygen toxicity. There are three forms of SOD proteins: cytosolic Cu-Zn SOD, mitochondrial Mn SOD, and extracellular SOD(SOD-3). The recombinant lentivirus containing the human SOD-3 gene was injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. From 341 injected embryos, the 78 chicks hatched after 21 days incubation. The hatched chicks were screened for the human SOD-3 gene by using PCR. Two of 47 male chickens that survived to sexual maturity contained the human SOD-3 gene in their semen. These results showed that our transgenic chicken generation system was completely established.

Characteristics of flow field of nose-only exposure chamber for inhalation toxicity evaluation (흡입독성평가를 위한 비부노출 챔버의 유동흐름 특성)

  • Noh, Hakjae;Bong, Choonkeun;Bong, Hakyung;Kim, Yonggu;Cho, Myunghaing;Kim, Sanghwa;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this work, we evaluated the characteristics of flow field and uniformity of the nose-only exposure chambers for the inhalation toxicity test. Computational fluid dynamics (CFD) modeling was carried out to demonstrate uniformity of the nose-only exposure chambers. Because it is very important in the inhalation toxicity experiments that test materials are distributed uniformly to each holder of the chamber. The test was done with these 3 types of chamber with different form to develop inhalation toxicity evaluation system, easy-to-operate system among exposure chamber used for evaluating inhalation toxicity of environmental chemical mixtures. Through CFD interpretation, nose-only exposure chamber was made with the selection of the optimal conditions. For its evaluation, one type of fragrance was selected and measured particle size distribution of each port. The gene becoming luminous to green fluorescence was combined with GPT-SPE, a type of tGFP vector, to be inhaled to the mouse. Based on this, luminous intensity was checked. As a result, total particle number concentration of each port had average value of $3.17{\times}10^6{\sharp}/cm^3$ and range of the highest and lowest concentration value was approximately ${\pm}4.8%$. Autopsy of lung tissues of mouse showed that it had clearly better delivery of gene compared to the control group.

Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm

  • Gong, Zhao-Hui;Jin, Hui-Qing;Jin, Yong-Feng;Zhang, Yao-Zhou
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.717-724
    • /
    • 2005
  • The nontoxic B subunit of cholera toxin (CTB) can significantly increase the ability of proteins to induce immunological tolerance after oral administration, when it was conjugated to various proteins. Recombinant CTB offers great potential for treatment of autoimmune disease. Here we firstly investigated the feasibility of silkworm baculovirus expression vector system for the cost-effective production of CTB under the control of a strong polyhedrin promoter. Higher expression was achieved via introducing the partial non-coding and coding sequences (ATAAAT and ATGCCGAAT) of polyhedrin to the 5' end of the native CTB gene, with the maximal accumulation being approximately 54.4 mg/L of hemolymph. The silkworm bioreactor produced this protein vaccine as the glycoslated pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Further studies revealed that mixing with silkworm-derived CTB increases the tolerogenic potential of insulin. In the nonconjugated form, an insulin : CTB ratio of 100 : 1 was optimal for the prominent reduction in pancreatic islet inflammation. The data presented here demonstrate that the silkworm bioreactor is an ideal production and delivery system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes and CTB functions as an effective mucosal adjuvant for oral tolerance induction.

Characterization of Chitin and Chitosan as a Biomedical Polymer (생체의료용 재료로써 키틴·키토산의 특성)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2008
  • Development of various medical systems was accomplished through the progress of biotechnological method for therapy of human diseases. Furthermore, drug delivery systems have been investigated to carry the bioactive materials such as drug or gene in the body effectively. The most important thing in this system is to develop biomedical polymers having biocompatibility, biodegradability, and non-toxicity. Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristics. Since the property of chitosan is differently explained according to the crystalline structures of chitin, the study for structural analysis of chitin has to proceed to apply as a biomaterial. From this point of view, this article introduced the analysis of crystalline structural of chitin, general property of chitosan and potential characteristics of low molecular weight water-soluble chitosan (LMWSC) as a biomaterials. Furthermore, chemical modification of LMWSC using various functional groups was also performed to enhance its bioavailability and emphasize their potential as drug delivery carriers (DDS).

Physicochemical Characterization and Carcinoma Cell Interaction of Self-Organized Nanogels Prepared from Polysaccharide/Biotin Conjugates for Development of Anticancer Drug Carrier

  • Park Keun-Hong;Kang Dong-Min;Na Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1369-1376
    • /
    • 2006
  • Self-organized nanogels were prepared from pullulan/biotin conjugates (PU/Bio) for the development of an effective anticancer drug delivery system. The degree of biotin substitution was 11, 19, and 24 biotin groups per 100 anhydroglucose units of pullulan. The physicochemical properties of the nanogels (PU/Bio1, 2 and 3) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all the samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CACs) of the nanoparticles in distilled water were $2.8{\times}10^{-2},\;1.6{\times}10^{-2}$, and $0.7{\times}10^{-2}mg/ml$ for the PU/Bio1, 2, and 3, respectively. The aggregation behavior of the nanogels indicated that biotin can perform as a hydrophobic moiety. To observe the specific interaction with a hepatic carcinoma cell line (HepG2), the conjugates were labeled with rhodamine B isothiocyanate (RITC) and their intensities measured using a fluorescence microplate reader. The HepG2 cells treated with the fluorescence-labeled PU/Bio nanoparticles were strongly luminated compared with the control (pullulan). Confocal laser microscopy also confirmed internalization of the PU/Bio nanogels into the cancer cells. Such results demonstrated that the biotin in the conjugate acted as both a hydrophobic moiety for self-assembly and a tumor-targeting moiety for specific interaction with tumor cells. Consequently, PU/Bio nanogels would appear to be a useful drug carrier for the treatment of liver cancer.

Effect of Molecular Weight of Polyethylenimine on the Transfection of Plasmid DNA (Plasmid DNA의 세포전이에 대한 PEI 분자량의 영향)

  • Lee, Kyung-Man;Kim, In-Sook;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Polyethylenimine (PEI) has been used as cationic polymers for efficient gene transfer without the need for endosomolytic agents. Various kinds of PEIs with different molecular weight were tested in order to investigate the effects of the molecular weight of PEI on the transfection efficiency and cell cytotoxicity. The ${\beta}-galactosidase$ expression $(pCMV-{\beta}-gal)$ plasmid was used as a model DNA. Complex formation between PEI and pDNA was assessed by 1% agarose gel electrophoresis method. Particle size and zeta-potential of complexes were determined by electrophoretic light scattering spectrometer. In vitro transfection efficiency was assayed by measuring ${\beta}-galactosidase$ activity. Cell cytotoxicity was determined by MTT assay. Particle sizes of the complexes became smaller on increasing molecular weights of PEI and N/P ratios. Surface potential of complexes was increased as the molecular weight of PEI increased. Transfection efficiency of $pCMV-{\beta}-ga1$ on the HEK 293 cells was greatest with PEI 25 K system but having the lowest cell viability. PEI with high molecular weight showed higher transfection efficiency and cell viability than PEI with low molecular weight.

Inducing apoptosis by the inhibition of c-myb in oral squamous carcinoma cell line, KB cell

  • Lee, Jung-Chang;Moon, Hyun-Ju;Lee, Young-Hee;Jung, Ji-Eun;Sharma, Manju;Jhee, Eun-Jung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy and is a major cause of worldwide cancer mortality. The proto-oncogene c-myb plays an important role in regulation of cell growth and differentiation, and it is expressed at high levels in hematopoietic cells and many other types of cancers. However, the function of c-myb is not well known in OSCC. The present study aimed to reveal the function of c-myb and to test the alternation of cell growth and signaling by c-myb in OSCC. In this study, c-myb and dominant-negatibe myb(DNmyb) were expressed in an adenovirus-mediated gene delivery system to KB cells. The over-expressed c-myb brought increased cellular proliferation compared with control cells. However, DN-myb infected KB cells showed significant reduction of cell growth and enhanced induction of apoptosis to activate PARP and caspase 9. c-myb induced increase of IGF-I, -II and IGF-IR expressions while DN-myb down-regulated these expression. Activation of ERK and Akt/PKB pathway was shown only in c-myb transduced cells. These findings suggest that the role of c-myb in cell growth of oral cancer cells is partially mediated through the modulation of IGFs, ERK and Akt/PKB. From this results, DN-myb is strongly recommended as a curable gene for the treatment of c-myb dependent malignancies such as OSCC.

Anti-apoptotic effect by Bcl-2 in UVB-irradiated keratinocytes.

  • Takahashi, Hidetoshi;Honma, Masaru;Ishida-Yamamoto, Akemi;Namikawa, Kazuhiko;Miwa, Akiko;Okado, Haruo;Kiyama, Hiroshi;Iizuka, Hajime
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Bcl-2 is a member of large bcl-2 family and protects cells from apoptosis. Using bcl-2-expressing adenovirus vector (Ad-bc1-2), we investigated the effect of bc1-2 on UVB-induced apoptosis. Adenovirus vector efficiently introduced bc1-2 gene in cultured normal mouse keratinocytes (NMK cells); almost all NMK cells (lx10$^{6}$ ) were transfected at Ixl0$^{8}$ PFU/ml. Bcl-2-transfected NMK cells were significantly resistant to UVB-induced apoptosis with the suppressive effect dependent on bcl-2-expression level. Following UVB irradiation caspase 8, 3, 9 activities were stimulated in NMK cells, while in bc1-2-transfected cells, only caspase 8, but not caspase 3 or 9 activities were stimulated. In order to investigate the effect of bc1-2 in vivo, topical application of Ad-bc1-2 on tape-stripped mouse skin was performed. Following the application, Bc1-2 was efficiently overexpressed in almost all viable keratinocytes. The expression was transient with the maximal expression of Bc1-2 at 1st day following the application of lxl0$^{9}$ PFU in 200ml. The introduced Bc1-2 remained at least for 6 days. UVB irradiation (1250 J/m$^2$) induced apoptosis within 12 h and the maximal effect was observed at 24 h in control mouse skin. Bc1-2-transfected mice skin were resistant to UVB-induced apoptosis. Topical application of empty adenovirus vector alone had no effect on Bc1-2 expression or UVB-induced apoptosis. These results indicate that adenovirus vector is an efficient gene delivery system into keratinocytes and that Bcl-2 is a potent inhibitor of UVB-induced apoptosis both in vitro and in vivo.

  • PDF

Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell (동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합)

  • Kim, Hye-Young;Yoon, Bo-Hyun;Chang, Hyo-Ihl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.