• Title/Summary/Keyword: Gene arrangement

검색결과 53건 처리시간 0.028초

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Osmotic Stress-Inducible Expression of a Lipid Transfer Protein Gene in Poplar

  • Lee, Hyo-Shin;Shin, Han-Na;Bae, Eun-Kyung;Lee, Jae-Soon;Noh, Eun-Woon
    • 한국자원식물학회지
    • /
    • 제21권3호
    • /
    • pp.204-209
    • /
    • 2008
  • We have cloned an LTP gene (PoLTP1) from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells and examined changes in its expression levels in response to various stresses and ABA treatment. The full-length PoLTP1 cDNA clone encodes a polypeptide of 116 amino acids with typical characteristics of LTPs, notably a conserved arrangement of cysteine residues. Southern blot analysis indicate that two or three copies of the PoLTP1 are present in the genome of the investigated hybrid poplar. In addition, northern analysis of samples from soil-grown plants indicate that PoLTP1 is tissue-specifically expressed in the leaves and flowers. The gene is significantly up-regulated by treatment with mannitol, NaCl and ABA, but not by either cold or wounding. These results indicate that PoLTP1 is involved in osmotic stress responses in poplar plants and suspension cells.

담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발 (Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles)

  • 김도균;최용성;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권7호
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • 제5권3호
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

Identification, Characterization and Phylogenic Analysis of Conserved Genes within the odvp-6e/odv-e56 Gene Region of Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Mauffette, Yves;Guertin, Claude
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.206-212
    • /
    • 2004
  • The genes that are located within the odvp-6e/odv-e56 region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing the 11 kb BamHI restriction fragment on the ChfuGV genome. The global GC content that was calculated from the data obtained from this genomic region was 34.96%. The open-reading frames (ORFs), located within the odvp-6e/odv-e56 region, are presented and compared to the equivalent ORFs that are located at the same region in other GVs. This region is composed of 14 ORFs, including three ORFs that are unique to ChfuGV with no obvious homologues in other baculoviruses as well as eleven ORFs with homologues to granuloviral ORFs, such as granulin, CfORF2, pk-1, ie-1, odv-e18, p49, and odvp-6e/odv-e56. In this study, the conceptual products of seven major conserved ORFs (granulin, CfORF2, IE-1, ODV-E18, p49 and ODVP-6E/ODV-E56) were used in order to construct phylogenetic trees. Our results show that granuloviruses can be grouped in 2 distinct groups as follows: Group I; Choristoneura fumiferana granulovirus (ChfuGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), and Adoxophyes orana granulovirus (AoGV). Group II; Xestia c-nigrum granulovirus (XcGV), Plutella xylostella granulovirus (PxGV), and Trichoplusia ni granulovirus (TnGV). The ChfuGV conserved proteins are most closely related to those of CpGV, PhopGV, and AoGV. Comparative studies, performed on gene arrangements within this region of genomes, demonstrated that three GVs from group I maintain similar gene arrangements.

상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가 (Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems)

  • 임승현;이찬욱;홍성진;유도근
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.294-302
    • /
    • 2020
  • 대표적인 메타 휴리스틱 알고리즘 중 하나인 유전알고리즘은 생명체의 자연 진화 과정을 컴퓨터 시뮬레이션하며 이 과정에서 선택, 교차, 그리고 돌연변이가 수행된다. 이 과정에서 유전알고리즘은 정의길이가 짧고, 차수가 낮은 반면, 높은 적응도를 갖는 스키마타의 병렬배열에 의해 최적해에 근접해 간다. 본 연구에서는 유전알고리즘의 핵심 작동원리 중 하나인 빌딩블록가설과 상수관망 시스템이 가지고 있는 공학적, 수리학적 특성을 동시에 고려한 최적해 효율성 제고의 가능성을 살펴보고자 하였다. 즉, 공학적 문제 해결에 있어 유전알고리즘 수행을 위한 유전자의 배치순서에 따른 최적화 결과의 효율성을 평가하였다. 공학적 문제로 상수관로 최적설계 문제를 선택하여 적용하였으며, 유전자 배치순서는 기존배치, 네트워크 위상 기반 배치, 그리고 유량크기 기반 배치로 구분하여 공학적 특이성을 반영하였다. 적용결과 유량 크기 기반 배치를 적용한 최적화 결과가 기존배치에 비하여 평균적으로 약 2-3% 우수한 것으로 나타났다. 이것은, 실제 공학 최적화 문제의 적용성과 효율성을 증대시키기 위해서는 명확한 사전지식(수리학적 특성 등)을 활용하여 가능한 이와 같은 우수한해의 특성이 소멸되지 않도록 하는 장치가 반드시 필요하다는 것을 의미한다. 제안된 방법론은, 향후 대규모 상수관망 최적설계에 있어 효율성 제고를 위한 방안으로 활용이 가능할 것으로 판단된다.

Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

  • Mao, H.L.;Wang, J.K.;Lin, J.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.648-652
    • /
    • 2012
  • This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a $2{\times}2$ factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression.

Complete Mitochondrial Genome of a Troglobite Millipede Antrokoreana gracilipes (Diplopoda, Juliformia, Julida), and Juliformian Phylogeny

  • Woo, Hyung-Jik;Lee, Yong-Seok;Park, Shin-Ju;Lim, Jong-Tae;Jang, Kuem-Hee;Choi, Eun-Hwa;Choi, Yong-Gun;Hwang, Ui Wook
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.182-191
    • /
    • 2007
  • The complete mitochondrial genome of a troglobite millipede Antrokoreana gracilipes (Verhoeff, 1938) (Dipolopoda, Juliformia, Julida) was sequenced and characterized. The genome (14,747 bp) contains 37 genes (2 ribosomal RNA genes, 22 transfer RNA genes and 13 protein-encoding genes) and two large non-coding regions (225 bp and 31 bp), as previously reported for two diplopods, Narceus annularus (order Spirobolida) and Thyropygus sp. (order Spirostreptida). The A + T content of the genome is 62.1%, and four tRNAs ($tRNA^{Ser(AGN)}$, $tRNA^{Cys}$, $tRNA^{Ile}$ and $tRNA^{Met}$) have unusual and unstable secondary structures. Whereas Narceus and Thyropygus have identical gene arrangements, the $tRNA^{Thr}$ and $tRNA^{Trp}$ of Antrokoreana differ from them in their orientations and/or positions. This suggests that the Spirobolida and Spirostreptida are more closely related to each other than to the Dipolopoda. Three scenarios are proposed to account for the unique gene arrangement of Antrokoreana. The data also imply that the Duplication and Nonrandom Loss (DNL) model is applicable to the order Julida. Bayesian inference (BI) and maximum likelihood (ML) analyses using amino acid sequences deduced from the 12 mitochondrial protein-encoding genes (excluding ATP8) support the view that the three juliformian members are monophyletic (BI 100%; ML 100%), that Thyropygus (Spirostreptida) and Narceus (Spirobolida) are clustered together (BI 100%; ML 83%), and that Antrokoreana (Julida) is a sister of the two. However, due to conflict with previous reports using cladistic approaches based on morphological characteristics, further studies are needed to confirm the close relationship between Spirostreptida and Spirobolida.