• Title/Summary/Keyword: GenBank

Search Result 643, Processing Time 0.023 seconds

Variability in the coat protein genes of two orchid viruses from Phlaenopsis orchids in Korea

  • Park, S.H.;H.R. Lim;G.D. Ye;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.145.1-145
    • /
    • 2003
  • This study was conducted to designing conserved regions of molecules for virus-derived resistance to transgenic Phlaenopsis orchids to protect against two major orchid viruses, Cymbidum mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). Infected leaf samples of Phalaenopsis were randomly screened by the RT-PCR with specific primers to both of viruses. RT-PCR products of the viruses were cloned and their nucleotide sequences were determined. Multiple alignments of coat protein (CP) genes of the viruses revealed that over the 88 % and 94 % identities with CymMV and ORSV, respectively, were observed. These data can be useful for selection of highly conserved regions of CP gene of the viruses for transgenic orchid experiments.

  • PDF

Some properties of Cucumber mosaic virus and a potfvirus isolated from Freesia

  • Lim, H.R.;Shin, E.G.;Ahn, H.I.;Ryu, K.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.147.1-147
    • /
    • 2003
  • Freesia, a member of the Iridaceae family, has fragant, tubular shaped flowers and is very popular ornamental plants in the world. Diseased freesia plants showing systemic leaf streak mosaic symptoms were collected from a cultivated farm in Kyonggi province, Korea in 2003, and its causal agents were investigated. Two viruses, Cucumber mosaic virus (Fr-CMV) and a potyvirus, were identified from the leaf tissues of the diseased freesia based on sequence analysis and host range tests. CMV-Fr could infect systemically on Chenopodium quinoa, C. amaranticolor, N. glutinosa, and N. benthamiana, and this biological property is distinguishable from ordinary strains of CMV. A filamentous potyvirus-shaped virus could not infect general indicator plants by mechanical inoculation. Single RT-PCR products was successfully amplified with a set of degenerate primers specific to the Potyvirus genus and total nucleic acids from the infected tissues, and was cloned into the pGEMT-Easy vector. Nucleotide sequences confirmed it belongs to the Potyvirus genus with either a new species or an isolate of Freesia mosaic virus (no information is available for the FrMV). This is the first report of FrMV in Korea and more characterizations of the two viruses are in progress.

  • PDF

Sequence Analysis of the Coat Protein Gene of a Korean Isolate of Iris Severe Mosaic Potyvirus from Iris Plant

  • Park, Won-Mok;Lee, Sang-Seon;Park, Sun-Hee;Ju;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • The coat protein gene of iris severe mosaic potyvirus, which was isolated in Korea, ISMV-K, from iris plant was cloned and its nucleotide sequence was determined. The coat protein of the virus contained 252 amino acid residues, including five potential N-glyxosylation site motifs. The coat protein of ISMV-K has 99.1% and 98.4% sequence identities with those of the Netherlands isolate of ISMV (ISMV-Ne) form crocus for the nucleotide and amino acids, respectively. The coat protein of ISMV-K has 50.4% to 60.3% nucleotide sequence identities and 47.3% to 55.7% amino acid identities with those of other 21 potyviruses, indicating ISMV to be a distinct species of the genus. The coat protein of ISMV-K was closely related with bean yellow mosaic virus and clover yellow vein virus in the phylogenetic tree analysis among the potyviruses analyzed. ISMV was easily and reliably detected from virus-infected iris leaves by RT-PCR with a set of the virus-specific primers.

  • PDF