• Title/Summary/Keyword: Gemological Analysis

Search Result 23, Processing Time 0.02 seconds

Gemological Studies on Garnet from Madagascar, Africa (아프리카 마다가스카르산 석류석에 대한 보석광물학적 연구)

  • Kim, Su-Hyun;Jang, Yun-Deuk;Kim, Jong-Rang;Kim, Jeong-Jin;Kim, Jong-Gun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • The Madagascar garnets wear mainly found as a porphyroblast in gneiss and classified into rhodolite, purple almandine, and brown almandine based on compositional characteristics and color. UV-visible analysis strong absorption bands, 400, 428, 504, 521, and 572 nm, were observed for rhodolite and purple almandine, and main absorption bands of 433 and 502 nm observed for brown almandine. For FT-IR analysis a strong absorption band of $640\;cm^{-1}$ was observed for rhodolite, two strong bands of 628 and $651\;cm^{-1}$ observed for brown almandine, and two weak absorption bands of 635 and $653\;cm^{-1}$ observed for purple almandine. Single distinct absorption band, $3552\;cm^{-1}$, was observed only for rhodolite. It is possible to distinguish rhodolite from purple or brown almandine by considering overall characteristics of the rhodolite such as color, RI, UV-visible absorption, FTIR absorption etc.

Color change of Zambian amethyst by heat treatment (잠비아산 천연 자수정의 열처리에 따른 색상변화)

  • Jun, Mi-Lee;Seo, Jin-Gyo;Kim, Young-Chool;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • It is known that the natural amethyst is changed to citrine after heat treatment. However, when all amethyst samples from Zambia were heat-treated in the temperature range of $350{\sim}380^{\circ}C$ for 1 hour, the result was that five out of eight samples were changed to citrine and all the rest of samples became rock crystal quartz. These differences in the color appearance seem to be influenced by the original colors contained in the amethyst before the heat treatment. The amethyst containing yellow color changed to citrine and the amethyst without containing yellow color changed to rock crystal quartz after the heat treatment. The results compared after the instrumental analysis on the difference of color change, it showed the differences of peak intensity in 3,400 $cm^{-1}$ and the existence and non-existence of peak at the range of 5,200${\sim}$5,400 $cm^{-1}$ in FTIR. It revealed the difference in the quantity of Cr which is a trace element in the WD-XRF analysis. The identical result in the FTIR spectra before and after the heat treatment reveals that the heat treatment did not cause any change in the main composing elements or crystal structure.

Spectroscopic Characteristics of Ruby from Gorno-Badakhshan, Tajikistan (타지키스탄 고르노바다흐샨주 지역 루비에 대한 분광학적 특성 연구)

  • Chung, Sol Lim;Park, Jong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Physical properties, XRF, UV-Vis, FTIR studies were carried out in order to characterize gemological features of ruby from Tajikistan. Fluorescence reaction of the Tajikistan ruby to short wave ultraviolet was moderate to very strong in red and long wave ultraviolet rays was weakly detected. UV-visible analysis strong absorption bands at 468.5, 475, 476.5 nm and broaden bands at 550 nm were observed for ruby due to $Cr^{3+}$. According to FT-IR analysis, all rubies from Tajikistan showed the similar patterns and kaolinite peaks at 3500, 3617, 3630, $3677cm^{-1}$ and boehmite broaden absorption bands at 3085 and $3320cm^{-1}$. Inclusions in Tajikistan ruby are observed solid inclusions, negative crystals, needle and silk inclusions. These distinctive characteristics mentioned above can be used to identify the locality and source of ruby stones from Tajikistan.