• Title/Summary/Keyword: Gear shifting

Search Result 50, Processing Time 0.023 seconds

Design Improvement of the Driving Bevel Gear in Transmissions of a Tracked Vehicle (궤도차량 변속기 구동용 베벨기어의 개선설계)

  • Jung, Jae-Woong;Kim, Kwang-Pil;Ji, Hyun-Chul;Moon, Tae-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. The bevel gears are major components for the transmission of power in a transmission. Increasing the tooth surface roughness and chamfering of the bevel gears, especially, we aim to improve the quality of transmission. In this study, design structural evaluation is conducted on bevel gears of transmission for tracked vehicle using the ROMAX-DESIGNER program. By doing so, design safety of the bevel gears has been evaluated based on the gear strength theory of ANSI/AGMA 2003 B97 standard.

Prediction of Noise & Vibration Effect of Agricultural Tractor Transmission at Design Stage

  • Kim, Jung-Hun;Kang, Young-Sun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.354-358
    • /
    • 1996
  • At design stage of the TRXI agricultural tractor transmission (New product of TongYang Moolsan Co., Ltd), the noise and vibration of the transmission were analyzed theoretically for the optimal design of the transmission . For this analysis, the finite element model was developed using a commercial computer software, ANSYS. The noise and vibration of the TRXI transmission housing were predicted by the modal analysis. Natural frequency of the TRXI transmission housing was ranged from 12.53Hz(1st mode ) to 30.05Hz(5th mode). The fifth mode took place at the bearing metal in the area of rear transmission housing and was very close to the gear mesh frequency (30.5Hz) of low rang gear at the low creep shifting . Based on the results , the bearing metal of the range shift housing was reenforced with the rib at design stage.

  • PDF

Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission (자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축)

  • Jang, In-Gyu;Seo, In-Keun;Jeon, Jae-Wook;Hwang, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

A Study on the Lifetime Assessment of Bearings According to the Output Shaft Supporting Structures in Transmissions of a Tracked Vehicles (궤도차량 변속기 출력 축 지지구조에 따른 베어링 수명 영향 평가에 대한 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.331-342
    • /
    • 2011
  • The transmission of tracked vehicles performs complex functions as steering, shifting, braking, etc. and the system level life time has been a key influenced by the number of sub-parts like as gear assembly, torque converter, clutches, bearings and so on. In particular, the mechanical type steering system in tracked vehicle has impact shock torques in steering shift and those kind of shock torques can effect on the durability of many sub-parts in power train system. The field failure modes of gear assembly, steering assembly and the bearings of output shaft appear as a very complex phenomenon. In this study, the actual failure, which may occur in field, of the transmission was investigated comprehensively and that the endurance test on the resulting output shaft bearing failure analysis and life assessment was performed. Life time test method used in this study, developed for the purpose of the internal usage, and under these testing techniques the impact of the each bearing damage, which used in tracked vehicle transmission left / right outputs of different structures, was analyzed.

A Study on the Structural Integrity Assessment of the Output Housing in Transmissions of a Tracked Vehicle (궤도차량 변속기 출력 하우징의 구조건전성 평가에 대한 연구)

  • Jung, Jae-Woong;Lee, Hee-Won;Moon, Tae-Sang;Gwon, Jun-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. Particularly, transmission housing is important structure which supports the transmission, and is made of aluminum alloy. Thus, structural robustness against such mechanical loading or vibration must be attained. Structural reliability evaluation through FEM analysis can save time and cost of the actual tests. In this study, structural evaluation is conducted on output housing of transmission, which is core component of tracked vehicle, using the simulation program. In addition, transmission dynamo test is performed to evaluate structural robustness of the output housing against the vibration which can be produced during the transmission operation.

Analysis of Power Shuttle Characteristics of Agricultural Tractor (농업용 트랙터의 전후진 파워시프트 변속 특성 해석)

  • 김대철;이호상;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.479-490
    • /
    • 2002
  • A dynamic model of a power shuttle transmission was developed and its validity was verified using the experimental data obtained from a transmission test bench. A 40㎾, 4WD tractor was also modeled using an application software EASY5 to investigate parameters and their effects on the power shifting performance. For a tractor model, the manual reverse gear was replaced by a power shuttle transmission. The tractor model also included an engine, main-gears for transmission, wheels, differentials and planet gears. Using the tractor model, the effects of the parameters such as modulating pressure and time, engine speed, tractor speed. tractor weight. reverse to forward speed ratio and torsional damper on the transient characteristics at starting and shuttle shifting were investigated by the computer simulation. The transient characteristics were represented by variations in clutch pressure, torque transmitted to input shaft and driving wheels, and power transmission capacity of the clutch. It was found that the modulating pressure and time affected most significantly the torque transmission and shifting time. The input torque, axle torque, power transmission capacity of the clutch and transmission time all increased with increase in engine speed, tractor speed. tractor weight and ratio of reverse to forward speeds. However, the axle torque decreased with tractor speed. Both the axle torque and power transmission capacity of the clutch also decreased with the ratio of reverse to forward speeds.

Shift-transient characteristics of an automatic transmission (자동변속기의 변속과도특성 해석)

  • Chang, Hyo-Whan;Jun, Yoon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.654-662
    • /
    • 1998
  • Shift quality of an automatic transmission in a vehicle is mainly affected by transient pressures in the hydraulic system during shifting. In this study, dynamic modelings of the hydraulic system and the power train of an automatic transmission are made systematically by a bond-graph method. The dynamic characteristics of the line pressures and clutch/brake pressures during shiftings are investigated by simulations and verified by experiments. The effects of clutch/brake pressures on the shift torque are also investigated through driving simulation.

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF

A Study on the Development of Synchromesh in Manual Transmission (수동변속기 동기장치의 개발에 관한 연구)

  • 이충섭;손진희;조희복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-117
    • /
    • 1996
  • The shift feeling, a driver experiences during gear shifting, is a major factor in manual transmission quality. Recently, the shift feeling has becoming more severe every year in proportion to the higher torque and revolution speed of today's automotive engine. In this paper, first, the diagram of a relation between cone angle, sleeve chamfer angle, and friction coefficient of ring is investigated for easy design of Synchromesh system. And then, methodology to solve the shift problems such as clashing noise and rough shift, ect. by analyzing the synchronization procedure in sequence and by investigating the shift waveform if presented.

  • PDF

The Decision Algorithm for Driving Intension Using Moduled Neural Network

  • Kang, Joon-Young;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1768-1771
    • /
    • 2002
  • Automatic Transmission System(ATS) was designed to replace the human's manual operation of the gear box. So far, this system operates with the fixed shift pattern information. In this paper, new algorithm considering driver's operation tendency is proposed. Also, to get rid of the uselessly frequent shift of the ATS, the conditions and the status of the vehicle would be included for the evaluation in making a decision of shifting. A field test is done in a car equipped with the computer set connected to Transmission Control Units(TCU) to check the status of the test car, and it shows the excellency of the proposed algorithm.

  • PDF