• Title/Summary/Keyword: Gear Transmission System

Search Result 271, Processing Time 0.023 seconds

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.

Study on the Development of High-speed Rotary Tilling System for Power Tiller (경운기의 고속 로터리 경운시스템 개발에 관한 연구)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF

Development of Strength and Durability Estimation System for Power Transmission Cylindrical Gears (원통치차의 강도평가 시스템 개발연구)

  • 정태형;변준형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 1993
  • A strength and durability estimation system of involute cylindrical gears which are commonly used as power transmission devices is developed on the personal computer, which analyzed and/or evaluates the gear design and the service performance at the point of view of strength and durability. The typical considerations are the bending strength and the sunface durability, and the strength and durability estimations are carried out using the reliable standards of AGMA&ISO. In addition, the finite element analysis (FEM) of tooth bending stress is conducted in order to compare the real maximum stress with the estimaed bending stress by the standard. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength & durability are appraised seperately by each method, and a series of the estimation processes is integrated into the system can be used in the initial design at the view point of strength and durability. And it is useful to the purpose of the trouble-shooting of gear system and the purpose of introducing the methods for maintaining design strength in service, with appraising the strength and durability after design or with appraising the influencing factors, as a whole. Therefore, this strength and durability estimation system can help the aim of automatic design of cylindrical gears.

Measurement of the Dynamic Transmission Error of Helical Gears by the Accelerometers (가속도계에 의한 헬리컬 기어의 동적 전달오차의 측정)

  • Kim, Dae-Sik;Cho, Do-Hyun;Park, Chan-Il;Choi, Deo-Kki;Park, Chan-Gook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1720-1727
    • /
    • 2003
  • The object of this work is to develop the measurement method of the transmission error of the helical gears. For this purpose, experimental set up is designed by 3D CAD software. It consists of the motor, inverter, powdered brake equipment, torque sensor and helical gearbox. In this study, tangential linear accelerometers were used as the methods for the transmission error measurement. the acceleration signals are transmitted to the signal conditioners through the slip rings and the transmission errors are obtained by a specially designed circuit board. The transmission errors are analyzed in the frequency domain. As a result, The periodicity of the transmission error is confirmed in the mesh frequency and its harmonics. The magnitude of harmonic components is very dependent on the natural frequencies of the gear system. It usually increases with the rotational speed. However, it does not always increase with torque.

Development of Precision Forging Process on the Clutch Gear of a Counter Shaft (카운터샤프트 클러치 기어의 정밀성형 공정 개발)

  • Kim, H.P.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally it has been manufactured as follows; the counter shaft gear has consisted of a clutch and helical body with teeth which are forged and machined for teeth respectively and then attached by frictional welding. In this study, a new hot forging process was proposed and designed so that the counter shaft gear is formed as one body without divide it into two parts. Furthermore, the precision forging process has been developed for the clutch teeth without additional grinding.

  • PDF

A study on Shift Efficiency Characteristics of a 2-speed Transmission applying CVT Structure (CVT구조를 적용한 2단 변속기의 효율특성에 관한 연구)

  • Kwang-Wook Youm
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2024
  • In this study, we conducted research on a miniaturized transmission system suitable for ultra-compact electric vehicles, such as electric arts or small electric cars. While conventional electric vehicles eliminate multi-gear transmissions and control motor output or secure initial driving force through reducers, in vehicles like electric karts or compact electric cars, which have relatively small battery capacities, the driving range can be reduced or the motor can be stressed epending on the loading state. Therefore, in this study, we developed a low stage ratio 0.625 and high stage ratio 1.6 a two-stage transmission system that can change gears as needed, considering factors such as slope conditions and loading status, by applying the continuously variable transmission (CVT) mechanism. Based on the selected gear ratios, we designed the transmission and created a test rig to verify the power transmission efficiency of the developed transmission. Using the test rig, we varied the rotational speed and load of the transmission to confirm its power transmission characteristics and also examined the heat generation characteristics during shifting and operation. As a result, developed a two-stage transmission with a CVT structure.

Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission (비접촉 동력 전달을 위한 마그네트 기어 기반 감속기의 속도 제어에 관한 연구)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.380-388
    • /
    • 2016
  • Using the magnet gear, it is possible to transmit power without mechanical contact. As the drive shaft in a magnet gear-based speed reducer system is isolated from the drive shaft, the system is a two-inertia resonance system that should cope with an external load with the limited air-gap stiffness. On the other hand, the drive shaft or low-speed side is controlled only by the torque of the drive shaft through an air-gap, and the excessive oscillation or the slip can then be generated because of an abrupt disturbance that is different from the general mechanical gear system. Therefore, the disturbance loaded at the low speed side should be measured or estimated, and considered in the control of the driving shaft. This paper proposes a novel full-state feedback controller with a reduced-order observer for the speed reducer system using a magnet gear with a unified harmonic modulator. The control method was verified by simulation and experiment. To estimate the load at the low speed side, a novel observer was designed, in which the new state variable is introduced and the new state equation is formulated. Using a full-state feedback controller including the observer, the test result against disturbance was compared with two D.O.F PI speed controllers. The pole slip was compensated within relatively a short time, and the simulation result about the estimated variable shows a similar tendency to the test result. The test results showed that the magnet gear-based reducer can be applied to an accurate servo system.

Analysis of the Influence of an Architecture on Vehicle Performances (입력 분기식 하이브리드 동력전달계의 구조별 성능 분석)

  • Yang, Ho-Rim;Jo, Nam-Uk;Cho, Sung-Tae;Lim, Won-Sik;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • In the recent studies, various types of multi mode electric variable transmission for hybrid electric vehicle have been proposed. Multi mode electric variable transmission consists of two or more different type planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally the power flows can be classified into three different types such as Input split, output split nd compound split. In This paper, we present velocity and torque equations of the input-split powertrain and analyze its optimal Performances. There are six combinations of the input-split powertrain, each combination has various lever length. We find optimal planetary gear ratios for fuel economy and acceleration performance, and compare performances of each combination.

  • PDF

Automatic Transmission Design Analysis of the Tractor from Advanced Company (선진사 트랙터 자동변속기 설계 분석)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2013
  • A tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. As the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. Though manual and power shuttle transmissions are produced by domestic corporations, development for full-automatic power shift transmissions has never been challenged, and so related technology level is quite low. This paper gives a survey of the automatic transmissions from advanced foreign company, which includes layout of gear train, the way hydraulics controls clutches and brakes, electronic control system. The results are expected to be utilized as a basis in the development of original power train design for tractor.

Steady State Performance Analysis of the Multi-mode Power Transmission Systems Equipped on Passenger Car (승용차용 다중모드 동력 전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Park, Yun-Kyoung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.364-371
    • /
    • 2013
  • Because of the increases in international oil prices and the level of global warming, the automotive industry has much interest in developing green cars with high fuel efficiencies. In addition, researchers in Korea are actively responding to high oil prices and $CO_2$ emission regulations in many ways. One example is, the multi-mode hybrid system, which is being studied to improve its performance. Because a multi-mode hybrid system is able to overcome the weaknesses of a system that uses simple planetary gears, excellent fuel efficiency and driving performances are the key features of the system. This paper analyzes the driving performance of the power-train system of GM-2MT70, which consists of one engine, two electric motors, one simple planetary gear, one double planetary gear, two clutches, and two brakes. The driving performance of the system's steady state is analyzed using performance modeling. The dynamic performance is analyzed using Matlab Simulink.