• Title/Summary/Keyword: Gear Strength/Durability

Search Result 43, Processing Time 0.022 seconds

Developing Planetary Gear Reduction Design Software for the Planetary Gear Design and Durability Strength Analysis of Armored Vehicle's Transmission (장갑차용 트랜스미션의 유성기어 설계 및 내구 강도 분석을 위한 유성기어 감속기 설계 소프트웨어의 개발)

  • SinHyun Kang;SungHo Park;YonSang Cho
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.173-182
    • /
    • 2023
  • The composite planetary gear reducer, a power transmission component of armored vehicles, operates at a high torque and is used in severe environments such as mountain, gravel or unpaved roads. Therefore, they must be designed and manufactured to have high durability. To design such a planetary gear reducer, there are numerous specifications to validate, such as selecting the module and the number of teeth of each gear satisfied the requirements, and calculating gear specifications and durability strength. Because planetary gears constitute a combination of several gears, there are many restrictions and interferences in selecting the number of teeth and addendum modification coefficients, and designing the tooth shape. Developing an auto design program is necessary to design various planetary gears more conveniently and quickly. In this study, a planetary gear reducer design software, widely used in various machines and armored vehicles, was developed. This design software can automatically select the number of teeth and modules of the gears, calculate specifications and quickly evaluate its fatigue durability strength and scoring failure according to the planetary gear reducer design theory.

Development of Rating Systems for Power Transmission Bevel Gears (동력전달용 베벨기어의 강도평가 시스템 개발 연구)

  • Chong, T.H.;Chi, J.J.;Byun, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.66-73
    • /
    • 1995
  • Rating systems of bevel gears(straight, spiral, and zerol bevel gears) which are commonly used as power transmission devices for non-papallel axes are developed on the personal computer, which analyze and/or evaluate the gear design and the service performance at the point of view of strength and durability. The typical considerations of the ratings are the bending strength, the surface durability, and the scoring resistance. The ratings are carried out using the reliable standards of AGMA & Gleason Works. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength, dura- bility, and scoring partially in Gleason are appraised seperately by each method, and a series of the estimation processes is integrated into the system so as to compare each result. The developed rating systems can be used in the initial stage of gear design process, and also a better design can be performed by the evaluation of the initial design at the view point of gear strength and durability. Additionally, it is useful for the trouble-shooting of bevel gear system and to the purpose of introducing the methods for maintaining design strength in service, with appraising the gear strength after design or with appraising the influencing factor as a whole. Therefore, this rating systems can help the aim of design automation of bevel gears.

  • PDF

Design of Gear Dimension and Tooth Flank Form for Optimal and Robust Gear Performance (치차성능의 최적성과 강건성을 고려한 치차제원 및 치면수정의 설계)

  • 배인호;정태형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • Tooth errors inevitable in the manufacturing process have large effect on the strength/durability and vibration performances of gear drives. We show that the manufacturing errors affect the overall gear performances, especially vibration performance, and propose a robust optimal design method for gear dimension and its tooth flank form that guarantees reliable performances to the variation of manufacturing errors. This method begins with a search of optimal design candidates by using the previously developed gear optimal design method for the strength/durability and vibration performances. Then, the statistical analysis method is applied to find a robust design solution for the vibration performance which is generally very sensitive to the manufacturing variations.

Development of Strength and Durability Estimation System for Power Transmission Cylindrical Gears (원통치차의 강도평가 시스템 개발연구)

  • 정태형;변준형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 1993
  • A strength and durability estimation system of involute cylindrical gears which are commonly used as power transmission devices is developed on the personal computer, which analyzed and/or evaluates the gear design and the service performance at the point of view of strength and durability. The typical considerations are the bending strength and the sunface durability, and the strength and durability estimations are carried out using the reliable standards of AGMA&ISO. In addition, the finite element analysis (FEM) of tooth bending stress is conducted in order to compare the real maximum stress with the estimaed bending stress by the standard. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength & durability are appraised seperately by each method, and a series of the estimation processes is integrated into the system can be used in the initial design at the view point of strength and durability. And it is useful to the purpose of the trouble-shooting of gear system and the purpose of introducing the methods for maintaining design strength in service, with appraising the strength and durability after design or with appraising the influencing factors, as a whole. Therefore, this strength and durability estimation system can help the aim of automatic design of cylindrical gears.

Durability Test and Test Jig Development of an Automotive Parking Lock Gear (자동차용 파킹 락 기어의 내구시험과 시험 지그 개발)

  • Mun, Hyun-Sik;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.104-109
    • /
    • 2018
  • Generally, the durability of the parking lock gear is evaluated through an endurance test for the entire transmission but no test standard exists for the durability test of one part of a parking lock gear. Therefore, in this study, the durability test standards of the parking lock gear were determined autonomously, and the durability performance test was conducted. A static fracture test was carried out to determine the yield strength of the parking lock gear, and a durability test condition was set to 60 % of the yield strength. The durability test of 1,000,000 times was conducted under the given conditions using a dedicated test jig manufactured for the test. Because the jig fractured during the static fracture test, finite element analysis for the jig was carried out and the jig was re-designed. The modified jig was manufactured and the durability test was carried out based on the test standard of autonomously. The basic data on the performance and endurance limit of the parking lock gear were obtained using these tests and analyses, and the basic data will be used as fundamental materials for the design and the development of the parking lock gear.

Rating Systems for Power Transmission Bevel Gears (베벨기어의 강도평가 시스템에 관한 연구)

  • 정태형;지중조;변준형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.632-637
    • /
    • 1993
  • Rating systems of bevel gears(straight, spiral, and zerol bevel gears) which are commonly used as power transmission devices for non-parallel axes are developed on the personal computer, which analyze and/or evaluate the gear design and the service performance at the point of view of strength and durability. The typical considerations of the ratings are the bending strength the surface durability, and the scoring resistance. The ratings are carried out using the reliable standards of AGMA & Gleason Works. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength, durability, and scoring partially in Gleason are appraised separatedly by each method, and a series of the estimation processes is integrated into the system so as to compare each result. The developed rating system can be used in the initial stage of gear design process, and also a better design can be performed by the evaluation of the initial design at the view point of gear strength and durability. Additionally, it is useful for the trouble-shooting of bevel gear systems and to the purpose of introducing the methods for maintaining design strength in service with appraising the gear strength after design or with appraising the influencing factors, as a whole. Therefore, this rating systems can help the aim of design automation of bevel gears.

  • PDF

Strength and Durability Analysis of the Double Planetary Gears (복합유성기어의 강도 및 내구성 해석)

  • Han, Sung Gil;Shin, Yoo-In;Yoon, Chan Heon;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • A planetary gear train is more compact and endures greater amounts of transmission power compared to other gear systems. Although planetary gear systems operate in small volumes, they are capable of very high efficiency due to the compact combination of their gears in the planetary gear system. They also have outstanding efficiency of only 3% for power transmission, tantamount to the power loss that occurs in each of the shift stages. Given these advantages, planetary gear systems are used in the driving systems of, which are widely used in automobile transmissions, machine tools, semiconductor equipment, and in other areas in industrial fields. Current structural equipment requires higher efficiency and greater torque levels. According to these needs, we have designed a complex planetary gear system which creates higher levels of torque. In this paper, an evaluation of strength designs for the proposed planetary gear system was conducted to ensure the stability of the gear. In addition, a durability analysis based on Miner's rule was performed using RS B 0095 device.

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.

A Study on Durability of Seat Height Motor Gear by Angle (시트 하이트 모터 기어의 각도별 내구성에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.18-23
    • /
    • 2019
  • In this study, structural and fatigue analyses of the motor gears that control the height of car seat were carried out at angles of $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$. The study aims at examining which angle of the gear is superior in terms of effect on strength. In the structural and fatigue analyses, the force of 3136 N was applied to the gears, and the stress and deformation were obtained. As the analysis results, model B ($30^{\circ}$) is suggested to have the best strength and fatigue durability among the three models.

Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 -)

  • Ha Young Wook;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.