• Title/Summary/Keyword: GeSe

Search Result 330, Processing Time 0.029 seconds

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Photo-Induced Scalar Phenomena according to Thickness Dependence of Chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ Thin Film (칼코게나이트 $As_{40}Ge_{10}Se_{15}S_{35}$ 박막에서 두께에 따른 광유기 스칼라 현상)

  • 이현용;박수호;정홍배
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.467-472
    • /
    • 1997
  • In this study, we investigated the thickness dependence of thermal bleaching(TB) effect as well as photo-induced scalar phenomena, such as photodrakening(PD) effect and photorefraction(PR) change, in chalcogenide A $s_{40}$ G $e_{10}$S $e_{15}$ $S_{35}$ thin films. We found that when these films were exposed for 15 minutes using blue-pass filtered Hg lamp(~4300$\AA$) after annealing for 30 minutes around the glass transition temperature Tg(20$0^{\circ}C$), the refractive index change ($\Delta$n) was varied up to 0.02~0.46 according to each thickness condition and the optical energy gap ($\Delta$ $E_{op}$ ) was shifted to a longer wavelength of approximately 0.67eV, especially for 1000$\AA$-thickness. Also, the TB PD effects have been understood by the results related to optical absorption characteristics. The TB effect could be estimated as increasing the stabilization of amorphous chalcogenide films since absorption slope of extended regions(U) was not changed by annealing. On the other hand, the PD effect could be understood as due to the enhancement of disorder since U and the slope of Urbachs tail(1/F) around an absorption edge were decreased by exposing.ing.n edge were decreased by exposing.

  • PDF

Performance Evaluation of a Selenium(a-Se) Based Prototype Digital Radiation Detector (비정질 셀레늄 기반 디지털 방사선 검출기의 성능 평가)

  • Park, Ji-Koon;Kang, Sang-Sik;Cho, Sung-Ho;Shin, Jung-Wook;Kim, So-Yeong;Son, Dae-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.300-305
    • /
    • 2007
  • In this study, we have studied the fabrication and the performance evaluation of digital radiation detector of the based on selenium (a-Se) prototype which is widely researched about recently. The detector was fabricated using amorphous selenium in the specification of active area size $7{\times}8.5"$, pixel pitch $139{\mu}m$, and 12 bit ADC. In order for the performance evaluation of the fabricated detector, we used radiation quality RQA 5 that is suggested by the International Electrotechnical Commission (IEC), and evaluated modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Concerning MTF measurement, we used slit camera (Nuclear Associates, Model : 07-624-2222), and evaluated in the slit method. Also so as to compare the performance evaluation on the detector fabricated in this study, we used Hologic Direct-Ray (DR-1000) and GE Revolution XQ/I system, and evaluated and compared in the same method MTF, NPS, and DQE which are image quality factors. And as a result, the MTF of each detector In Nyquist frequency were evaluated to be 58% (at 3.5 lp/mm) in the case of DR-1000 and 65% (at 2.5 lp/mm) in the case of XQ/I, and that for the detector fabricated in this study was evaluated to be 36% (at 3.51 lp/mm). Also in the case of DQE(0), the detector fabricated in this study, DR-1000 of Hologic company, and XQ/I system of GE company respectively were evaluated as 36%, 32%, and 50%.

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Design of 4:1 I$\mathbb{R}$ zoom afocal telescope (원적외선 대역 4 : 1 줌 망원경 광학계 설계)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1998
  • A high performance afocal zoom telescope has been designed to operate in the 7.6${\mu}{\textrm}{m}$ to 10.3${\mu}{\textrm}{m}$ waveband for thermal imaging system. This IR zoom telescope is characterized by using of two movable optical element groups, variator and compensator, with mechanically compensated method and the positioning of these groups is controlled by means of a computerized program. The optical performance over the entire 4:1 zoom range and $\pm$2.31~$\pm$9.36 degrees field of view is near diffraction limit while maintaining a constant F-number. The all refracting surfaces of this system except only one aspheric surface are spherical curvature and the material for the optical elements is selected Ge and ZnSe which is used for correction of chromatic aberration.

  • PDF

Resistive Memory Switching in Ge5Se5 Thin Films

  • Kim, Jang-Han;Hwang, Yeong-Hyeon;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.326-326
    • /
    • 2014
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states [1-3]. We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40-xBix Alloy

  • Kareem Ali Jasim;Haider Sahi Hussein;Shaymaa Hashim Aneed;Ebtisam Mohammed Taqi Salman
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.267-274
    • /
    • 2024
  • In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet's randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.

Fabrication and Evaluation of Chalcogenide Glass for Molding (몰드성형용 GeSbSe계 칼코게나이드 유리 제작 및 특성 분석)

  • Park, Heung-Su;Cha, Du-Hwan;Kim, Hye-Jeong;Kim, Jeong-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.135-139
    • /
    • 2012
  • In this study, we synthesized the chalcogenide glass($Ge_{19}Sb_{23}Se_{58}$) for infrared optics by meltquenching method and verified the effect of cooling condition on the glass properties. The structural and optical properties of the glass were analyzed by XRD, FT-IR and SEM image. The glass synthesized under the cooling temperature of $980^{\circ}C$ shows transmittance of 58% at $8\sim12{\mu}m$, which was decreased as the cooling temperature was decreased. In addition, thermal and hardness also were measured. From the analysis results, we ascertained the feasibility as a molding materials for infrared optics.

Construction of Inverse Photoemission Spectrometer and Its Application (역광전자분광기의 제작 및 그 응용)

  • Kim, Jeong-Won;Kim, Se-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.719-723
    • /
    • 1996
  • An inverse photoemission spectrometer has been built and tested to study the unoccupied electron energy states of solid surfaces. It consists of a low energy electron gun and a band pass photon detector in an ultra-high vacuum chamber. The electron ray tracing simulation and current measurement of the electron gun show a good focus and a high flux of electron current. The overall resolution of the spectrometer is 0.74 eV and the sensitivity of the photon detector is about 10 counts/$sec{\cdot}{\mu}A.$ As a test experiment, the inverse photoemission spectra of a Ge(111) sample is in good agreement with the theoretical result.

  • PDF

STM Tip Catalyzed Adsorption of Thiol Molecules and Functional Group-Selective Adsorption of a Bi-Functional Molecule Using This Catalysis

  • Min, Yeong-Hwan;Jeong, Sun-Jeong;Yun, Yeong-Sang;Park, Eun-Hui;Kim, Do-Hwan;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.197-197
    • /
    • 2011
  • In this study, in contrast with cases in which Scanning Tunneling Microscopy (STM) tip-induced reactions were instigated by the tunneling electrons, the local electric field, or the mechanical force between a tip and a surface, we found that the tungsten oxide (WO3) covered tungsten (W) tip of a STM acted as a chemical catalyst for the S-H dissociative adsorption of phenylthiol and 1-octanethiol onto a Ge(100) surface. By varying the distance between the tip and the surface, the degree of the tip-catalyzed adsorption could be controlled. We have found that the thiol head-group is the critical functional group for this catalysis and the catalytic material is the WO3 layer of the tip. After removing the WO3 layer by field emission treatment, the catalytic activity of the tip has been lost. 3-mercapto isobutyric acid is a chiral bi-functional molecule which has two functional groups, carboxylic acid group and thiol group, at each end. 3-Mercapto Isobutyric Acid adsorbs at Ge(100) surface only through carboxylic acid group at room temperature and this adsorption was enhanced by the tunneling electrons between a STM tip and the surface. Using this enhancement, it is possible to make thiol group-terminated surface where we desire. On the other hand, surprisingly, the WO3 covered W tip of STM was found to act as a chemical catalyst to catalyze the adsorption of 3-mercapto isobutyric acid through thiol group at Ge(100) surface. Using this catalysis, it is possible to make carboxylic acid group-terminated surface where we want. This functional group-selective adsorption of bi-functional molecule using the catalysis may be used in positive lithographic methods to produce semiconductor substrate which is terminated by desired functional groups.

  • PDF