• Title/Summary/Keyword: Gaussian noise addition

Search Result 76, Processing Time 0.021 seconds

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

Real-time Small Target Detection using Local Contrast Difference Measure at Predictive Candidate Region (예측 후보 영역에서의 지역적 대비 차 계산 방법을 활용한 실시간 소형 표적 검출)

  • Ban, Jong-Hee;Wang, Ji-Hyeun;Lee, Donghwa;Yoo, Joon-Hyuk;Yoo, Seong-eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • In This Paper, we find the Target Candidate Region and the Location of the Candidate Region by Performing the Morphological Difference Calculation and Pixel Labeling for Robust Small Target Detection in Infrared Image with low SNR. Conventional Target Detection Methods based on Morphology Algorithms are low in Detection Accuracy due to their Vulnerability to Clutter in Infrared Images. To Address the Problem, Target Signal Enhancement and Background Clutter Suppression are Achieved Simultaneously by Combining Moravec Algorithm and LCM (Local Contrast Measure) Algorithm to Classify the Target and Noise in the Candidate Region. In Addition, the Proposed Algorithm can Efficiently Detect Multiple Targets by Solving the Problem of Limited Detection of a Single Target in the Target Detection method using the Morphology Operation and the Gaussian Distance Function Which were Developed for Real time Target Detection.

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.

Threshold Selection Method for Capacity Optimization of the Digital Watermark Insertion (디지털 워터마크의 삽입용량 최적화를 위한 임계값 선택방법)

  • Lee, Kang-Seung;Park, Ki-Bum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2009
  • In this paper a watermarking algorithm is proposed to optimize the capacity of the digital watermark insertion in an experimental threshold using the characteristics of human visual system(HVS), adaptive scale factors, and weight functions based on discrete wavelet transform. After the original image is decomposed by a 3-level discrete wavelet transform, the watermarks for capacity optimization are inserted into all subbands except the baseband, by applying the important coefficients from the experimental threshold in the wavelet region. The adaptive scale factors and weight functions based on HVS are considered for the capacity optimization of the digital watermark insertion in order to enhance the robustness and invisibility. The watermarks are consisted of gaussian random sequences and detected by correlation. The experimental results showed that this algorithm can preserve a fine image quality against various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, sharpening, linear and non-linear filtering, etc.

  • PDF

Copy-move Forgery Detection Robust to Various Transformation and Degradation Attacks

  • Deng, Jiehang;Yang, Jixiang;Weng, Shaowei;Gu, Guosheng;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4467-4486
    • /
    • 2018
  • Trying to deal with the problem of low robustness of Copy-Move Forgery Detection (CMFD) under various transformation and degradation attacks, a novel CMFD method is proposed in this paper. The main advantages of proposed work include: (1) Discrete Analytical Fourier-Mellin Transform (DAFMT) and Locality Sensitive Hashing (LSH) are combined to extract the block features and detect the potential copy-move pairs; (2) The Euclidian distance is incorporated in the pixel variance to filter out the false potential copy-move pairs in the post-verification step. In addition to extracting the effective features of an image block, the DAMFT has the properties of rotation and scale invariance. Unlike the traditional lexicographic sorting method, LSH is robust to the degradations of Gaussian noise and JEPG compression. Because most of the false copy-move pairs locate closely to each other in the spatial domain or are in the homogeneous regions, the Euclidian distance and pixel variance are employed in the post-verification step. After evaluating the proposed method by the precision-recall-$F_1$ model quantitatively based on the Image Manipulation Dataset (IMD) and Copy-Move Hard Dataset (CMHD), our method outperforms Emam et al.'s and Li et al.'s works in the recall and $F_1$ aspects.

$\pi$/4 shift QPSK with Trellis-Code and Lth Phase Different Metrics (Trellis 부호와 L번째 위상차 메트릭(metrics)을 갖는$\pi$/4 shift QPSK)

  • 김종일;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.10
    • /
    • pp.1147-1156
    • /
    • 1992
  • In this paper, in order to apply the $\pi/4$ shift QPSK to TCM, we propose the $\pi/8$ shift 8PSK modulation technique and the trellis-coded $\pi/8$ shift 8PSK performing signal set expansion and partition by phase difference. In addition, the Viterbi decoder with branch metrics of the squared Euclidean distance of the first phase difference as well as the Lth phase different is introduced in order to improve the bit error rate(BER) performance in differential detection of the trellis-coded $\pi/8$ shift 8PSK. The proposed Viterbi decoder is conceptually the same as the sliding multiple detection by using the branch metric with first and Lth order phase difference. We investigate the performance of the uncoded $\pi/4$ shift QPSK and the trellis-coded $\pi/8$ shift 8PSK with or without the Lth phase difference metric in an additive white Gaussian noise (AWGN) using the Monte Carlo simulation. The study shows that the $\pi/4$ shift QPSK with the Trellis-code i.e. the trellis-coded $\pi/8$ shift 8PSK is an attractive scheme for power and bandlimited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance. Also, the nest proposed algorithm can be used in the TC $\pi/8$ shift 8PSK as well as TCMDPSK.

  • PDF

Effective Adaptive Dynamic Quadrature Demodulation in Medical Ultrasound Imaging

  • Yoon, Heechul;Jeon, Kang-won;Lee, Hyuntaek;Kim, Kyeongsoon;Yoon, Changhan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.468-475
    • /
    • 2018
  • In medical ultrasound imaging, frequency-dependent attenuation downshifts and reduces a center frequency and a frequency bandwidth of received echo signals, respectively. This causes considerable errors in quadrature demodulation (QDM), result in lowering signal-to-noise ratio (SNR) and contrast resolution (CR). To address this problem, adaptive dynamic QDM (ADQDM) that estimates center frequencies along depth was introduced. However, the ADQDM often fails when imaging regions contain hypoechoic regions. In this paper, we introduce a valid region-based ADQDM (VR-ADQDM) method to reject the misestimated center frequencies to further improve SNR and CR. The valid regions are regions where the center frequency decreases monotonically along depth. In addition, as a low-pass filter of QDM, Gaussian wavelet based dynamic filtering was adopted. From the phantom experiments, average SNR improvements of the ADQDM and the VR-ADQDM over the traditional QDM were 1.22 and 5.27 dB, respectively, and the corresponding maximum SNR improvements were 2.56 and 10.58 dB. The contrast resolution of the VR-ADQDM was also improved by 0.68 compared to that of the ADQDM. Similar results were obtained from in vivo experiments. These results indicate that the proposed method would offer promises for imaging technically-difficult patients due to its capability in improving SNR and CR.

Equalization Digital On-Channel Repeater for Single Frequency Network Composition of ATSC Terrestrial Digital TV Broadcasting (ATSC 지상파 디지털 TV 방송의 단일 주파수 망 구성을 위한 등화형 디지털 동일 채널 중계기)

  • Park Sung Ik;Eum Homin;Lee Yong-Tae;Kim Heung Mook;Seo Jae Hyun;Kim Hyoung-Nam;Kim Seung Won
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.371-383
    • /
    • 2004
  • In this paper we consider technological requirements to broadcast digital television signals using single frequency networks (SFN) in the Advanced Television Systems Committee (ATSC) transmission systems and propose equalization digital on-channel repeater (EDOCR) that overcomes the limitations of conventional digital on-channel repeaters (DOCRs). Since there are no forward error correction (FEC) decoder and encoder, the EDOCR does not have an ambiguity problem. In addition, since an adaptive equalizer in the EDOCR removes multi-path signals, additive white Gaussian noise (A WGN), and feedback signal due to low antenna isolation, the EDOCR may have good output signal quality with high power.

A Systematic Demapping Algorithm for Three-Dimensional Signal Transmission (3차원 신호 전송을 위한 체계적인 역사상 알고리즘)

  • Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1833-1839
    • /
    • 2014
  • In this paper, a systematic demapping algorithm for three-dimensional (3-D) lattice signal constellations is presented. The algorithm consists of decision of an octant, computation of a distance from the origin, and determination of the coordinates of a symbol. Since the algorithm can be extended systematically, it is applicable to the larger lattice constellations. To verify the algorithm, 3-D signal transmission systems with field programmable gate array (FPGA) and $Matlab^{(R)}$ are implemented. And they are exploited to carry out computer simulation. As a result, both hardware and software based systems produce almost the same symbol error rates (SERs) in an additive white Gaussian noise (AWGN) environment. In addition, the hardware based system implemented with an FPGA generates waveforms of 3-D signals and recovers the original binary sequences perfectly. Those results confirm that the algorithm and the implemented 3-D transmission system operate correctly.