• 제목/요약/키워드: Gaussian noise

검색결과 1,217건 처리시간 0.023초

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

비가우시안 노이즈가 존재하는 수중 환경에서 MBK 시스템의 위치 추정 (Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks)

  • 이대희;양연모;허경무
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.232-238
    • /
    • 2013
  • 본 논문은 노이즈가 비 정규 분포를 따르는 수중 환경에서 비 선형 필터 기법에 따른 Mass-Damper-Spring (MBK) 시스템 위치추정에 관한 연구 내용이다. 최근 위치 추정에 사용되는 필터는 확장 칼만 필터 (EKF: Extended Kalman Filter) 와 파티클 필터(Particle Filter)가 주목 받고 있다. EKF는 가우시안 잡음 (Gaussian Noise) 이 존재하는 비선형 시스템에서 정확도가 높은 알고리즘으로 널리 사용되고 있지만, 수중 환경과 같이 비 가우시안 잡음이 존재하는 경우 사용에 많은 제약이 따른다. 이에 본 논문에서는 상태예측을 기반으로 둔 EKF와 비교하여, 통계적 발생 가능성 인자 (Maximum Likelihood) 에 기반한 분포 재해석 기법을 이용한 개선된 ODPF (One-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 non-Gaussian noise가 존재하는 수중 환경에서 EKF와 제안한 Particle filter를 사용한 위치 추정 결과를 비교 분석하였으며, 계산 용량 및 통계 샘플이 충분한 경우 ODPF가 EKF 대비 정확한 위치 추정 결과를 제공하는 것을 확인하였다.

비 정규 분포 잡음 채널에서 높은 신호 대 잡음비를 갖는 무선 센서 네트워크의 정보 융합 (Fusion of Decisions in Wireless Sensor Networks under Non-Gaussian Noise Channels at Large SNR)

  • 박진태;김기성;김기선
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.577-584
    • /
    • 2009
  • Fusion of decisions in wireless sensor networks having flexibility on energy efficiency is studied in this paper. Two representative distributions, the generalized Gaussian and $\alpha$-stable probability density functions, are used to model non-Gaussian noise channels. By incorporating noise channels into the parallel fusion model, the optimal fusion rules are represented and suboptimal fusion rules are derived by using a large signal-to-noise ratio(SNR) approximation. For both distributions, the obtained suboptimal fusion rules are same and have equivalent form to the Chair-Varshney fusion rule(CVR). Thus, the CVR does not depend on the behavior of noise distributions that belong to the generalized Gaussian and $\alpha$-stable probability density functions. The simulation results show the suboptimality of the CVR at large SNRs.

다치 직교 Partial Response Signaling 시스템의 특성에 관한 연구 (The Performance Analysis of Multi-Level Quadrature Partial Response Signaling System)

  • 이광열;고봉진;조성준
    • 한국통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.285-301
    • /
    • 1988
  • 다치 직교 PRS(Partial Response Signaling) 시스템이 잡음, 간섭, 캐리어옵\ulcornerV, 위상지터, 페이딩 등에 의해 개별적으로 또는 복합적으로 영향을 받았을 경우에 대한 PRS 신호의 오율식을 유도하였다. 유도된 식에 의해 반송파 대잡음 전력비, 반송파 대 간섭파 전력비, 위상에러, 임펄스 지수, 가우스성 잡음전력 대 임펄스성 잡음 전력비, PLL(Phase Locked Loop)의 신호 대 잡음전력비, 페이딩 지수 등을 함수로 하여 수치계산을 통해 각 경우의 오율특성을 구했다. 얻은 결과로부터, 일반적으로 임펄스성 잡음보다 오율 특성을 보다 더 열화시키지만 일단 신호가 페이딩을 받게되면 그 반대로 가우스성 잡음이 임펄스성 잡음보다 더욱 에러를 발생시킨다는 것을 알 수 있었다.

  • PDF

웨이브렛과 원소 편차 기반의 중간값 필터를 이용한 잡음제거 알고리즘 (Denoising Algorithm using Wavelet and Element Deviation-based Median Filter)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2798-2804
    • /
    • 2010
  • 음성 및 영상신호는 신호를 처리하는 과정에서 다양한 잡음에 의해 훼손되어지며, 이러한 신호를 복원하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 음성신호와 같은 1차원 신호에 복합적으로 중첩된 가우시안 잡음과 임펄스 잡음을 제거하기 위한 알고리즘을 제안하였다. 알고리즘은 임펄스 잡음을 제거한 후, 가우시안 잡음을 제거 하도록 구성되어져 있으며, 가우시안 잡음을 제거하기 위해 웨이브렛 계수 누적을 이용하였고, 임펄스 잡음을 제거하기 위해 원소 편차에 기반한 중간값 필터를 적용하였다. 그리고 개선 효과의 판단 기준으로 SNR을 사용하였으며, 객관적인 판단을 위해 기존의 방법들과 비교하였다.

On Presentable Approximation for Nonlinear Noise

  • Kang, Jie-Hyung
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.23-34
    • /
    • 1992
  • This is an extension of results of Wiener's nonlinear noise theory from noises generated by the Wiener process to noises generated by processes with stationary Gaussian increments. In particular, using Nisio's Approach, we show that every measurable ergodic noise can be approximated in law by Gaussian process-presentable noise.

  • PDF

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

가우시안 잡음환경에서 영상복원을 위한 개선된 적응 가중치 필터 (An Improved Adaptive Weighted Filter for Image Restoration in Gaussian Noise Environment)

  • ;황용연;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.623-625
    • /
    • 2012
  • 가우시안 잡음에 의해 훼손된 영상의 복원은 영상처리분야에서 가장 중요한 과제이다. 가우시안 잡음을 제거하기 위해, 가우시안 필터, 평균 필터, 가중치 필터 등 다양한 방법들이 제안되었다. 그러나 기존의 방법들은 잡음제거 및 에지 보존성능이 미흡하다. 따라서 본 논문에서는 효과적으로 잡음을 제거하기 위해, 마스크내의 각 화소들의 공간 거리와 추정된 잡음분산 등을 고려한 적응 가중치 필터를 제안하였다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교하였고, 판단기준으로 MSE(mean squared error)를 사용하였다.

  • PDF

비정규 충격성 잡음 환경에서 부호 순위 통계량에 바탕을 둔 직접수열 대역확산 부호 획득기법 (DS/SS Code Acquisition Scheme Based on Signed-Rank Statistic in Non-Gaussian Impulsive Noise Environments)

  • 김상훈;안상호;이영윤;유승수;윤석호
    • 한국통신학회논문지
    • /
    • 제33권2C호
    • /
    • pp.200-207
    • /
    • 2008
  • 본 논문에서는 수신된 신호 표본의 실제 간 대신 신호 표본의 부호와 (sign) 순위를 (rank) 사용하기에, 비정규 충격성 잡음 (non-Gaussian impulsive noise) 분산의 (dispersion) 정보를 필요로 하지 않는 새로운 부호 획득을 위한 검파기를 제안하였다. 제안한 검파기의 평균 부호 획득 성능을 $^{[1]}$의 검파기와 비교하였다. 모의실험을 통해 제안한 기법의 성능을 살펴보면, 비정규 충격성 잡음 분산의 편차에도 (deviation) 강인한 성능을 지니며, 비정규 충격성 잡음의 정확한 분산 정보를 이용한 $^{[1]}$의 기법과 대등한 성능을 지니고 있음을 알 수 있다.