• Title/Summary/Keyword: Gaussian density

Search Result 363, Processing Time 0.025 seconds

Monte-Carlo Simulation for Exposure and Development of Focused Ion Beam Lithography (집속이온빔 리소그라피 (Focused Ion Beam Lithography)외 노출 및 현상에 대한 몬데칼로 전산 모사)

  • Lee, Hyun-Yong;Kim, Min-Su;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1246-1249
    • /
    • 1994
  • Thin amorphous film of $a-Se_{75}Ge_{25}$ acts as a positive resist in ion beam lithography. Previously, we reported the optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy ion beam exposure and presented analytically calculated values such as ion range, ion concentration and ion transmission coefficient, etc. As the calculated results of analytical calculation, the energy loss per unit distance by $Ga^+$ ion is about $10^3[keV/{\mu}m]$ and nearly constant for all energy range. Especially, the projected range and struggling for 80 [KeV] $Ga^+$ ion energy are 0.0425[${\mu}m$] and 0.020[${\mu}m$], respectively. Hear, we present the results of Monte-Carlo computer simulation of Ga ion scattering, exposure and development in $a-Se_{75}Ge_{25}$ resist film for focused ion beam(FIB) lithography. Monte-Carlo method is based on the simulation of individual particles through their successive collisions with resist atoms. By the summation of the scattering events occurring in a large number N(N>10000) of simulated trajectories within the resist, the distribution for the range parameters is obtained. Also, the deposited energy density and the development pattern by a Gaussian or a rectangular ion beam exposure can be obtained.

  • PDF

Comparison of Parametric and Bootstrap Method in Bioequivalence Test

  • Ahn, Byung-Jin;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.367-371
    • /
    • 2009
  • The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

Novel UWB Transceiver for WBAN Networks: A Study on AWGN Channels

  • Zhao, Chengshi;Zhou, Zheng;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.11-21
    • /
    • 2010
  • A novel ultra-wideband (UWB) transceiver structure is presented to be used in wireless body area networks (WBANs). In the proposed structure, a data channel and a control channel are combined into a single transmission signal. In the signal, a modulation method mixing pulse position modulation and pulse amplitude modulation is proposed. A mathematical framework calculating the power spectrum density of the proposed pulse-based signal evaluates its coexistence with conventional radio systems. The transceiver structure is discussed, and the receiving performance is investigated in the additive white Gaussian noise channel. It is demonstrated that the proposed scheme is easier to match to the UWB emission mask than conventional UWB systems. The proposed scheme achieves the data rate requirement of WBAN; the logical control channel achieves better receiving performance than the logical data channel, which is useful for controlling and maintaining networks. The proposed scheme is also easy to implement.

Analysis of M-ary Antipodal Communication System for Multiple Access in Additive White Gaussian Noise (AWGN에서 다중접속을 위한 M진 Antipodal 초광대역 통신 시스템의 성능 분석)

  • Lee, Jung-Suk;Kim, Jong-Han;Kim, Yoo-Chang;Kim, Jung-Sun;Kim, Won-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.1-12
    • /
    • 2002
  • Ultra Wideband (UWB) system uses wide band signal, which power spectral density likes as a noise floor, so UWB system can be used high speed communication without interfering with other communication system. As this system doesn't use radio frequency carrier. Its structure would be very simple and consume very low power. For the first time, we adopted Rayleigh monopulse multiple access system. And under the AWGN, we analysis and compare error probability, the number of user and data rate of the two methods that pulse position modulation and antipodal. In the result, We concluded that the antipodal method had much better probability of error, the number of user and data rate than PPM.

Blind Equalization based on Maximum Cross-Correntropy Criterion using a Set of Randomly Generated Symbol (랜덤 심볼을 사용한 최대 코렌트로피 기준의 블라인드 등화)

  • Kim, Nam-Yong;Kang, Sung-Jin;Hong, Dae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.33-39
    • /
    • 2010
  • Correntropy is a generalized correlation function that contains higher order moments of the probability density function (PDF) than the conventional moment expansions. The criterion maximizing cross-correntropy (MCC) of two different random variables has yielded superior performance particularly in nonlinear, non-Gaussian signal processing comparing to mean squared error criterion. In this paper we propose a new blind equalization algorithm based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a set of randomly generated symbols that complies with the transmitted symbol PDF. The performance of the proposed algorithm based on MCC is compared with the Euclidian distance minimization.

Design and Performance Evaluation of Multilevel LDPC Codes (다중 레벨 LDPC 부호의 설계 및 성능 분석)

  • ;Yu Yi;Jia Hou
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • We design multilevel coding(MLC) with a semi bit-interleaved coded modulation(BICM) scheme based on low density parity check(LDPC) codes. Different from traditional designs, we joint the MLC and BICM together by using the Gray mapping, which can transmit the multimedia data over several equivalent channels with different code rates. To get a good performance from signal-to-noise ratio(SNR) very close to the capacity of the additive white Gaussian noise(AWGN) channel, random regular LDPC code and a simple semi-algebra LDPC(SA-LDPC) code are discussed in MLC with parallel independent decoding(PID). Finally, the numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency for multimedia communication system.

Maritime radar display unit based on PC for safe ship navigation

  • Bae, Jin-Ho;Lee, Chong-Hyun;Hwang, Chang-Ku
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • A prototype radar display unit was implemented using inexpensive off-the-shelf components, including a nonlinear estimation algorithm for the target tracking in a clutter environment. Two custom designed boards; an analog signal processing board and a DSP board, can be plugged into an expansion slot of a personal computer (PC) to form a maritime radar display unit. Our system provided all the functionality specified in the International Maritime Organization (IMO) resolution A422(XI). The analog signal processing board was used for A/D conversion as well as rain and sea clutter suppression. The main functions of the DSP board were scan conversion and video overlay operations. A host PC was used to run the tracking algorithm of targets in clutter, using the discrete-time Bayes optimal (nonlinear, and non-Gaussian) estimation method, and the graphic user interface (GUI) software for Automatic Radar Plotting Aid (ARPA). The proposed tracking method recursively found the entire probability density function of the target position and velocity by converting into linear convolution operations.

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

A Robust Crack Filter Based on Local Gray Level Variation and Multiscale Analysis for Automatic Crack Detection in X-ray Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1035-1041
    • /
    • 2016
  • Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.

An Elliptical Basis Function Network for Classification of Remote-Sensing Images

  • Luo, Jian-Cheng;Chen, Qiu-Xiao;Zheng, Jiang;Leung, Yee;Ma, Jiang-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1326-1328
    • /
    • 2003
  • An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.

  • PDF