• Title/Summary/Keyword: Gaussian channel

Search Result 515, Processing Time 0.021 seconds

The Performance Analysis of the Concatenated Coding System using Punctured Convolutional Code in the Satellite Channel (위성 채널에서 펑쳐드 콘볼루션 부호를 이용한 직렬연결 부호 시스템의 성능 분석)

  • 정호영;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1115-1125
    • /
    • 1994
  • In this paper, an efficient concatenated coding scheme under the satellite channel is presented. The performance of this scheme in terms of bit error rate versus energy per information bit over white gaussian noise power density E/N has been evaluated via computer simulation as a function of various system parameters. To achieve accuracy in simulation results, the distortions caused from the satellite channel, such as the nonlinearity of the TWTA(traveling wave tube amplifier), signal distortions of the input and output filters, has been considered. The simulation results show that, through using the 2/3 punctured convolutional code as the inner code of the concatenated code system, the coding rate can be improved more over 16%, while maintaining the same system complexity and bit error performance.

  • PDF

MIMO Capacity, Level Crossing Rates and Fades: The Impact of Spatial/Temporal Channel Correlation

  • Giorgetti, Andrea;Smith, Peter J.;Shafi, Mansoor;Chiani, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.104-115
    • /
    • 2003
  • It is well known that Multiple Input Multiple Output (MIMO) systems offer the promise of achieving very high spectrum efficiencies (many tens of bit/s/Hz) in a mobile environment. The gains in MIMO capacity are sensitive to the presence of spatial and temporal correlation introduced by the radio environment. In this paper, we examine how MIMO capacity is influenced by a number of factors e.g., a) temporal correlation b) various combinations of low/high spatial correlations at either end, c) combined spatial and temporal correlations. In all cases, we compare the channel capacity that would be achievable under independent fading. We investigate the behaviour of "capacity fades," examine how often the capacity experiences the fades, develop a method to determine level crossing rates and average fade durations and relate these to antenna numbers. We also evaluate the influence of channel correlation on the capacity autocorrelation and assess the fit of a Gaussian random process to the temporal capacity sequence. Finally we note that the particular spatial correlation structure of the MIMO channel is influenced by a large number of factors. For simplicity, it is desirable to use a single overall correlation measure which parameterizes the effect of correlation on capacity. We verify this single parameter concept by simulating a large number of different spatially correlated channels.

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

Recognition Algorithm for RM Codes Using Fast Hadamard Transform (FHT를 이용한 RM부호 인식 알고리즘)

  • Kang, In-Sik;Lee, Hyun;Lee, Jae-Hwan;Yun, Sang-Bom;Park, Cheol-Sun;Song, Young-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.43-50
    • /
    • 2012
  • The use of an error-correcting code is essential in digital communication systems where the channel is noisy. Unless a receiver has accurate channel coding parameters, it becomes difficult to decode the digitized encoding bits correctly. In this paper, estimation algorithm for RM(Reed-Muller) codes using FHT (Fast Hadamard algorithm) is proposed. The proposed algorithm estimates the channel coding parameters of RM codes and then decodes the codes using the characteristic of FHT. And we also verify the algorithm by performing intensive computer simulation in additive white gaussian noise (AWGN) channel.

Power-Space Functions in High Speed Railway Wireless Communications

  • Dong, Yunquan;Zhang, Chenshuang;Fan, Pingyi;Fan, Pingzhi
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • To facilitate the base station planning in high speed railway communication systems, it is necessary to consider the functional relationships between the base station transmit power and space parameters such as train velocity and cell radius. Since these functions are able to present some inherent system properties determined by its spatial topology, they will be referred to as the power-space functions in this paper. In light of the fact that the line-of-sight path persists the most power of the received signal of each passing train, this paper considers the average transmission rate and bounds on power-space functions based on the additive white Gaussian noise channel (AWGN) model. As shown by Monte Carlo simulations, using AWGN channel instead of Rician channel introduces very small approximation errors, but a tractable mathematical framework and insightful results. Particularly, lower bounds and upper bounds on the average transmission rate, as well as transmit power as functions of train velocity and cell radius are presented in this paper. It is also proved that to maintain a fixed amount of service or a fixed average transmission rate, the transmit power of a base station needs to be increased exponentially, if the train velocity or cell radius is increased, respectively.

Compact-SQAM for Power & Bandwidth Algorithm of Output Error Method (전력 및 대역폭 효율적인 디지틀 전송 시스템을 위한 협대역 중첩 직교 변조 방식)

  • 박일근;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.519-529
    • /
    • 1993
  • A spectral and power efficient modulation technique, named Compact Superposed Quadrature Amplitude Modulation (Compact-SQAM), is introduced. The performance of Compact-SQAM system, in a Linearly and nonlinearly amplified single and multicarrier environment, in the presence of additive white Gaussian noise(AWGN), intersymbol interference(ISI), timing jitter and adjacent channel interference (ACI), is experimentally analyzed via computer simulation. Various channel conditions, such as channel spacing, between the main and adjacent channels and fade depth on the desired main channel, are examined. Our result shows that Compact-SQAM, and better P(e) performance that other modems using simple Butteroworth type postdetection receive filters. Especially, Compact-SQAM modem achieves higher efficiency of frequency utilization and better P(e) performance than other modems in the severly bandlimited nonlinear multicarrier channels.

  • PDF

Multiuser Channel Estimation Using Robust Recursive Filters for CDMA System

  • Kim, Jang-Sub;Shin, Ho-Jin;Shin, Dong-Ryeol
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • In this paper, we present a novel blind adaptive multiuser detector structure and three robust recursive filters to improve the performance in CDMA environments: Sigma point kalman filter (SPKF), particle filter (PF), and Gaussian mixture sigma point particle filter (GMSPPF). Our proposed robust recursive filters have superior performance over a conventional extended Kalman filter (EKF). The proposed multiuser detector algorithms initially use Kalman prediction form to estimated channel parameters, and unknown data symbol be predicted. Second, based on this predicted data symbol, the robust recursive filters (e.g., GMSPPF) is a refined estimation of joint multipaths and time delays. With these estimated multipaths and time delays, data symbol detection is carried out (Kalman correction form). Computer simulations show that the proposed algorithms outperform the conventional blind multiuser detector with the EKF. Also we can see it provides a more viable means for tracking time-varying amplitudes and time delays in CDMA communication systems, compared to that of the EKF for near-far ratio of 20 dB. For this reason, it is believed that the proposed channel estimators can replace well-known filter such as the EKF.

Relation of Conduction Path and Subthreshold Swing for Doping Profile of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 도핑분포함수에 따른 전도중심과 문턱전압이하 스윙의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1925-1930
    • /
    • 2014
  • This paper has analyzed the relation of conduction path and subthreshold swing for doping profile in channel of asymmetric double gate(DG) MOSFET. Since the channel size of asymmetric DGMOSFET is greatly small and number of impurity is few, the high doping channel is analyzed. The analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. The conduction path and subthreshold swing are derived from this analytical potential distribution, and those are investigated for variables of doping profile, projected range and standard projected deviation, according to the change of channel length and thickness. As a result, subthreshold swing is reduced when conduction path is approaching to top gate, and that is increased with a decrease of channel length and a increase of channel thickness due to short channel effects.

Analysis of Subthreshold Swing for Channel Length of Asymmetric Double Gate MOSFET (채널길이에 대한 비대칭 이중게이트 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.401-406
    • /
    • 2015
  • The change of subthreshold swing for channel length of asymmetric double gate(DG) MOSFET has been analyzed. The subthreshold swing is the important factor to determine digital chracteristics of transistor and is degraded with reduction of channel. The subthreshold swing for channel length of the DGMOSFET developed to solve this problem is investigated for channel thickness, oxide thickness, top and bottom gate voltage and doping concentration. Especially the subthreshold swing for asymmetric DGMOSFET to be able to be fabricated with different top and bottom gate structure is investigated in detail for bottom gate voltage and bottom oxide thickness. To obtain the analytical subthreshold swing, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. As a result, subthreshold swing is sensitively changed according to top and bottom gate voltage, channel doping concentration and channel dimension.

A RSS-Based Localization Method Utilizing Robust Statistics for Wireless Sensor Networks under Non-Gaussian Noise (비 가우시안 잡음이 존재하는 무선 센서 네트워크에서 Robust Statistics를 활용하는 수신신호세기기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2011
  • In the wireless sensor network(WSN), the detection of precise location of sensor nodes is essential for efficiently utilizing the sensing data acquired from sensor nodes. Among various location methods, the received signal strength (RSS) based localization scheme is mostly preferable in many applications since it can be easily implemented without any additional hardware cost. Since the RSS localization method is mainly effected by radio channel between two nodes, outlier data can be included in the received signal strength measurement specially when some obstacles move around the link between nodes. The outlier data can have bad effect on estimating the distance between two nodes such that it can cause location errors. In this paper, we propose a RSS-based localization method using Robust Statistic and Gaussian filter algorithm for enhancing the accuracy of RSS-based localization. In the proposed algorithm, the outlier data can be eliminated from samples by using the Robust Statistics as well as the Gaussian filter such that the accuracy of localization can be achieved. Through simulation, it is shown that the proposed algorithm can increase the accuracy of localization and is more robust to non gaussian noise channels.