• Title/Summary/Keyword: Gaussian Mixture Model(GMM)

Search Result 237, Processing Time 0.028 seconds

Comparison of drone-based hyperspectral and multispectral imagery for bathymetry mapping (드론기반 초분광영상과 다분광영상을 활용한 수심산정 비교)

  • Yeonghwa Gwon;Dongsu Kim;Siyoon Kwon;Hojun You
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.54-54
    • /
    • 2023
  • 하천유역조사는 관련 법률의 규정에 의해 물관리정책의 수립에 필요한 기초정보를 제공하는 것을 목적으로 기본현황, 이수, 치수 환경생태 등 유역관리에 필요한 주요 조사항목을 대상으로 수행되고 있다. 조사방법 중 원격탐사자료 활용한 조사는 드론 모니터링 영상 및 위성영상자료를 이용해 댐·제방과 같은 치수 시설물의 안전관리, 수질 모니터링, 하천지형조사, 하상변동조사 등에 활용되고 있다. 최근에는 일반 RGB 영상뿐만 아니라 수백개의 분광밴드를 포함한 초분광영상을 이용한 하천조사 연구가 이루어지고 있다. 초분광영상은 분광해상도가 높아 다항목 조사에 활용할 수 있다는 장점이 있지만, 많은 양의 분광정보를 포함하고 있기 때문에 초기 수집 자료의 용량이 너무 크고, 분석을 위한 전처리 과정이 까다롭다는 단점이 있다. 반면, 10개 이하 밴드의 분광정보를 수집하는 다분광영상은 2개 밴드를 이용해 정규식생지수(NDVI)를 즉각적으로 모니터링할 수 있고, 작물의 생육현황 등을 분석할 수 있어 농업 및 산림분야에서 널리 활용되고 있다. 초분광영상을 이용한 수심산정 연구는 최적 밴드비 탐색 기법(OBRA)을 활용해 측정수심과 상관관계가 높은 밴드비를 이용해 수심맵을 구축하는 방식이 활용되어왔다. 본 연구에서는 기존의 초분광영상을 활용한 수심산정기법을 다분광영상에 적용하여 분광밴드수가 축소된(경량화된) 자료를 활용한 수심산정 가능성을 확인하기 위해 동일한 현장에서 초분광과 다분광 두가지 영상을 촬영하였으며, 각각 수심맵을 구축해 하천분야에서 다분광영상의 활용도를 평가하였다. 또한, 기존의 OBRA의 한계를 개선하기 위해 가우시안 혼합 모델(GMM; Gaussian Mixture Model)을 활용해 영상을 군집화하여 수심산정 정확도를 개선하였다.

  • PDF

Noise Rabust Speaker Verification Using Sub-Band Weighting (서브밴드 가중치를 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • Speaker verification determines whether the claimed speaker is accepted based on the score of the test utterance. In recent years, methods based on Gaussian mixture models and universal background model have been the dominant approaches for text-independent speaker verification. These speaker verification systems based on these methods provide very good performance under laboratory conditions. However, in real situations, the performance of speaker verification system is degraded dramatically. For overcoming this performance degradation, the feature recombination method was proposed, but this method had a drawback that whole sub-band feature vectors are used to compute the likelihood scores. To deal with this drawback, a modified feature recombination method which can use each sub-band likelihood score independently was proposed in our previous research. In this paper, we propose a sub-band weighting method based on sub-band signal-to-noise ratio which is combined with previously proposed modified feature recombination. This proposed method reduces errors by 28% compared with the conventional feature recombination method.

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.

A Short-Term Traffic Information Prediction Model Using Bayesian Network (베이지안 네트워크를 이용한 단기 교통정보 예측모델)

  • Yu, Young-Jung;Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.765-773
    • /
    • 2009
  • Currently Telematics traffic information services have been various because we can collect real-time traffic information through Intelligent Transport System. In this paper, we proposed and implemented a short-term traffic information prediction model for giving to guarantee the traffic information with high quality in the near future. A Short-term prediction model is for forecasting traffic flows of each segment in the near future. Our prediction model gives an average speed on the each segment from 5 minutes later to 60 minutes later. We designed a Bayesian network for each segment with some casual nodes which makes an impact to the road situation in the future and found out its joint probability density function on the supposition of GMM(Gaussian Mixture Model) using EM(Expectation Maximization) algorithm with training real-time traffic data. To validate the precision of our prediction model we had conducted various experiments with real-time traffic data and computed RMSE(Root Mean Square Error) between a real speed and its prediction speed. As the result, our model gave 4.5, 4.8, 5.2 as an average value of RMSE about 10, 30, 60 minutes later, respectively.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

New Illumination compensation algorithm improving a multi-view video coding performance by advancing its temporal and inter-view correlation (다시점 비디오의 시공간적 중복도를 높여 부호화 성능을 향상시키는 새로운 조명 불일치 보상 기법)

  • Lee, Dong-Seok;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.768-782
    • /
    • 2010
  • Because of the different shooting position between multi-view cameras and the imperfect camera calibration, Illumination mismatches of multi-view video can happen. This variation can bring about the performance decrease of multi-view video coding(MVC) algorithm. A histogram matching algorithm can be applied to recompensate these inconsistencies in a prefiltering step. Once all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching, the coding efficiency of MVC is improved. However the histogram distribution can be different not only between neighboring views but also between sequential views on account of movements of camera angle and some objects, especially human. Therefore the histogram matching algorithm which references all frames in chose view is not appropriate for compensating the illumination differences of these sequence. Thus we propose new algorithms both the image classification algorithm which is applied two criteria to improve the correlation between inter-view frames and the histogram matching which references and matches with a group of pictures(GOP) as a unit to advance the correlation between successive frames. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with the conventional algorithms.

Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm (Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • At existing skin detection methods using skin color information defined based on the prior knowldege, threshold value to be used at the stage of dividing the backround and the skin region was decided on a subjective point of view through experiments. Also, threshold value was selected in a passive manner according to their background and illumination environments in these existing methods. These existing methods displayed a drawback in that their performance was fully influenced by the threshold value estimated through repetitive experiments. To overcome the drawback of existing methods, this paper propose a skin region detection method using a histogram approximation based on the mean shift algorithm. The proposed method is to divide the background region and the skin region by using the mean shift method at the histogram of the skin-map of the input image generated by the comparison of the similarity with the standard skin color at the CbCr color space and actively finding the maximum value converged by brightness level. Since the histogram has a form of discontinuous function accumulated according to the brightness value of the pixel, it gets approximated as a Gaussian Mixture Model (GMM) using the Bezier Curve method. Thus, the proposed method detects the skin region by using the mean shift method and actively finding the maximum value which eventually becomes the dividing point, not by using the manually selected threshold value unlike other existing methods. This method detects the skin region high performance effectively through experiments.