• 제목/요약/키워드: Gated Recurrent unit

검색결과 103건 처리시간 0.026초

바로서기 동작 시 EEG와 역학변인 간 동작 예측의 탐구 (Exploration of Motion Prediction between Electroencephalography and Biomechanical Variables during Upright Standing Posture)

  • Kyoung Seok Yoo
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.71-80
    • /
    • 2024
  • Objective: This study aimed to explore the brain connectivity between brain and biomechanical variables by exploring motion recognition through FFT (fast fourier transform) analysis and AI (artificial intelligence) focusing on quiet standing movement patterns. Method: Participants included 12 young adult males, comprising university students (n=6) and elite gymnasts (n=6). The first experiment involved FFT of biomechanical signals (fCoP, fAJtorque and fEEG), and the second experiment explored the optimization of AI-based GRU (gated recurrent unit) using fEEG data. Results: Significant differences (p<.05) were observed in frequency bands and maximum power based on group and posture types in the first experiment. The second study improved motion prediction accuracy through GRU performance metrics derived from brain signals. Conclusion: This study delved into the movement pattern of upright standing posture through the analysis of bio-signals linking the cerebral cortex to motor performance, culminating in the attainment of motion recognition prediction performance.

시계열 내부 구조 기반 그래프 생성을 통한 행동 분류 모델 (Behavior Classification Model Based on Graph Generation Using Time Series Structural Feature)

  • 최혁순;양진환;김시웅;김성식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.37-40
    • /
    • 2024
  • 본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.

센서 측정기와 회로형 순환 유닛(GRU)을 이용한 실내 공기 품질 측정 및 추세 예측 시스템 (Indoor Air Condition Measurement and Regression Analysis System Through Sensor Measurement Device and Gated Recurrent Unit)

  • 안재현;신동일;김규호;양지훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권9호
    • /
    • pp.457-464
    • /
    • 2017
  • 실내 공기 품질 측정은 측정 대상 공간의 대기 상태 유지, 외부 변인으로 인한 대기 이상 현상을 검출하려는 방법이다. 실내 공기 품질을 주기적으로 기록하면서 변인에 따른 공기 변화에 특정 패턴이 발생함을 관측할 수 있었으나, 파라미터를 설정하고 계수를 찾아 나가기엔 파라미터의 개수나 그 영향력을 추산하기 어렵고 결과가 시간에 의존적이라는 문제가 있다. 따라서 본 실험은 이것을 공식화하는 대신, 측정 주기마다 추이를 예측하는 관측치 중심의 기계 학습 모델을 개발하는 것을 목표로 한다. 본 논문은 실내 대기 품질을 주기적으로 전송 및 저장하는 측정기의 기록 데이터로 공기 품질 변화를 예측하는 모델을 설명하고 시계열 분석 모델을 구축한다.

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석 (Multimodal Sentiment Analysis Using Review Data and Product Information)

  • 황호현;이경찬;유진이;이영훈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.15-28
    • /
    • 2022
  • 최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.

해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측 (Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy)

  • 고관섭;변성현;김영원
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.299-309
    • /
    • 2022
  • 최근 한반도 주역 해역의 수온이 꾸준히 증가하고 있다. 수온변화는 어업생태계에 영향을 미칠 뿐만 아니라 해양에서의 군사작전과도 밀접히 연관되어 있다. 본 연구는 딥러닝 기술을 기반으로 하는 다양한 예측모델을 통해 단기간 수온예측을 시도함으로써 어떠한 모델이 수온예측분야에 더욱 적합한지를 제시하는 것에 목적을 두었다. 예측을 위해 사용한 데이터는 국립수산과학원에서 해양 관측부이를 통해 관측한 2016년부터 2020년까지 동해 지역(고성, 양양, 강릉, 영덕)의 수온 데이터이다. 또한 예측을 위한 모델로는 시계열 데이터 예측에 우수한 성능을 보이는 Long Short-Term Memory (LSTM), Bidirectional LSTM 그리고 Gated Recurrent Unit (GRU) 기법을 사용하였다. 기존 연구가 LSTM만을 활용하였던데 반해 이번 연구에서는 LSTM 외에 다양한 기법을 적용함으로써 각 기법의 예측 정확도와 수행시간을 비교하였다. 연구결과, 1시간 예측을 기준으로 모든 관측지점에서 Bidirectional LSTM과 GRU 기법이 실제값과 예측값의 오차가 가장 적은 것으로 확인되었으며, 학습시간에 있어서는 GRU가 가장 빠른 것으로 확인되었다. 이를 통해, 예측 오차를 줄이면서 정확도를 향상하기 위한 수온예측에는 Bidirectional LSTM을 활용하고 대잠작전처럼 정확도 외에 실시간 예측이 필요한 분야에 있어서는 GRU 기법을 활용하는 방안이 더욱 적절할 것으로 판단된다.

네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법 (Deep Learning Based Group Synchronization for Networked Immersive Interactions)

  • 이중재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.

수온 데이터 예측 연구를 위한 통계적 방법과 딥러닝 모델 적용 연구 (Statistical Method and Deep Learning Model for Sea Surface Temperature Prediction)

  • 조문원;최흥배;한명수;정은송;강태순
    • 해양환경안전학회지
    • /
    • 제29권6호
    • /
    • pp.543-551
    • /
    • 2023
  • 기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개선할 수 있었다.

Recovery the Missing Streamflow Data on River Basin Based on the Deep Neural Network Model

  • Le, Xuan-Hien;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2019
  • In this study, a gated recurrent unit (GRU) network is constructed based on a deep neural network (DNN) with the aim of restoring the missing daily flow data in river basins. Lai Chau hydrological station is located upstream of the Da river basin (Vietnam) is selected as the target station for this study. Input data of the model are data on observed daily flow for 24 years from 1961 to 1984 (before Hoa Binh dam was built) at 5 hydrological stations, in which 4 gauge stations in the basin downstream and restoring - target station (Lai Chau). The total available data is divided into sections for different purposes. The data set of 23 years (1961-1983) was employed for training and validation purposes, with corresponding rates of 80% for training and 20% for validation respectively. Another data set of one year (1984) was used for the testing purpose to objectively verify the performance and accuracy of the model. Though only a modest amount of input data is required and furthermore the Lai Chau hydrological station is located upstream of the Da River, the calculated results based on the suggested model are in satisfactory agreement with observed data, the Nash - Sutcliffe efficiency (NSE) is higher than 95%. The finding of this study illustrated the outstanding performance of the GRU network model in recovering the missing flow data at Lai Chau station. As a result, DNN models, as well as GRU network models, have great potential for application within the field of hydrology and hydraulics.

  • PDF

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.