• Title/Summary/Keyword: Gated Recurrent Unit

Search Result 106, Processing Time 0.031 seconds

Data Processing and Analysis of Non-Intrusive Electrical Appliances Load Monitoring in Smart Farm (스마트팜 개별 전기기기의 비간섭적 부하 식별 데이터 처리 및 분석)

  • Kim, Hong-Su;Kim, Ho-Chan;Kang, Min-Jae;Jwa, Jeong-Woo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.632-637
    • /
    • 2020
  • The non-intrusive load monitoring (NILM) is an important way to cost-effective real-time monitoring the energy consumption and time of use for each appliance in a home or business using aggregated energy from a single recording meter. In this paper, we collect from the smart farm's power consumption data acquisition system to the server via an LTE modem, converted the total power consumption, and the power of individual electric devices into HDF5 format and performed NILM analysis. We perform NILM analysis using open source denoising autoencoder (DAE), long short-term memory (LSTM), gated recurrent unit (GRU), and sequence-to-point (seq2point) learning methods.

Acoustic model training using self-attention for low-resource speech recognition (저자원 환경의 음성인식을 위한 자기 주의를 활용한 음향 모델 학습)

  • Park, Hosung;Kim, Ji-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.483-489
    • /
    • 2020
  • This paper proposes acoustic model training using self-attention for low-resource speech recognition. In low-resource speech recognition, it is difficult for acoustic model to distinguish certain phones. For example, plosive /d/ and /t/, plosive /g/ and /k/ and affricate /z/ and /ch/. In acoustic model training, the self-attention generates attention weights from the deep neural network model. In this study, these weights handle the similar pronunciation error for low-resource speech recognition. When the proposed method was applied to Time Delay Neural Network-Output gate Projected Gated Recurrent Unit (TNDD-OPGRU)-based acoustic model, the proposed model showed a 5.98 % word error rate. It shows absolute improvement of 0.74 % compared with TDNN-OPGRU model.

Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning (LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측)

  • Lee, Seon-Min;Sun, Young-Ghyu;Lee, Jiyoung;Lee, Donggu;Cho, Eun-Il;Park, Dae-Hyun;Kim, Yong-Bum;Sim, Isaac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.79-85
    • /
    • 2019
  • In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

What are the benefits and challenges of multi-purpose dam operation modeling via deep learning : A case study of Seomjin River

  • Eun Mi Lee;Jong Hun Kam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.246-246
    • /
    • 2023
  • Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.

  • PDF

Development of a Speed Prediction Model for Urban Network Based on Gated Recurrent Unit (GRU 기반의 도시부 도로 통행속도 예측 모형 개발)

  • Hoyeon Kim;Sangsoo Lee;Jaeseong Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • This study collected various data of urban roadways to analyze the effect of travel speed change, and a GRU-based short-term travel speed prediction model was developed using such big data. The baseline model and the double exponential smoothing model were selected as comparison models, and prediction errors were evaluated using the RMSE index. The model evaluation results revealed that the average RMSE of the baseline model and the double exponential smoothing model were 7.46 and 5.94, respectively. The average RMSE predicted by the GRU model was 5.08. Although there are deviations for each of the 15 links, most cases showed minimal errors in the GRU model, and the additional scatter plot analysis presented the same result. These results indicate that the prediction error can be reduced, and the model application speed can be improved when applying the GRU-based model in the process of generating travel speed information on urban roadways.

Analysis of streamflow prediction performance by various deep learning schemes

  • Le, Xuan-Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.131-131
    • /
    • 2021
  • Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.

  • PDF

Comparison of Retaining Wall Displacement Prediction Performance Using Sensor Data (센서 데이터를 활용한 옹벽 변위 예측 성능 비교)

  • Sheilla Wesonga;Jang-Sik Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1035-1040
    • /
    • 2024
  • The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.

Adaptive Antenna Muting using RNN-based Traffic Load Prediction (재귀 신경망에 기반을 둔 트래픽 부하 예측을 이용한 적응적 안테나 뮤팅)

  • Ahmadzai, Fazel Haq;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.633-636
    • /
    • 2022
  • The reduction of energy consumption at the base station (BS) has become more important recently. In this paper, we consider the adaptive muting of the antennas based on the predicted future traffic load to reduce the energy consumption where the number of active antennas is adaptively adjusted according to the predicted future traffic load. Given that traffic load is sequential data, three different RNN structures, namely long-short term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) are considered for the future traffic load prediction. Through the performance evaluation based on the actual traffic load collected from the Afghanistan telecom company, we confirm that the traffic load can be estimated accurately and the overall power consumption can also be reduced significantly using the antenna musing.

Predicting Blood Glucose Data and Ensuring Data Integrity Based on Artificial Intelligence (인공지능 기반 혈당 데이터 예측 및 데이터 무결성 보장 연구)

  • Lee, Tae Kang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.201-203
    • /
    • 2022
  • Over the past five years, the number of patients treated for diabetes has increased by 27.7% to 3.22 million, and since blood sugar is still checked through finger blood collection, continuous blood glucose measurement and blood sugar peak confirmation are difficult and painful. To solve this problem, based on blood sugar data measured for 14 days, three months of blood sugar prediction data are provided to diabetics using artificial intelligence technology.

  • PDF